首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride–sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.  相似文献   

2.
We investigated the miscibility of nonionic hydrocarbon and fluorocarbon surfactants in the adsorbed film and the micelle by surface tension measurements of the aqueous solution. The combination of tetraethyleneglycol monodecyl ether (C10E4) and tetraethyleneglycol mono-1,1,7-trihydrododecafluoroheptyl ether (FC7E4) was chosen because they have the same hydrophilic groups and about the same surface activity. The extent of nonideal mixing was estimated quantitatively in terms of the excess Gibbs energy in the adsorbed film g(H,E) and that in the micelle g(M,E). The excess area per adsorbed molecule, A(H,E), was also evaluated and discussed. The ionic hydrocarbon and fluorocarbon mixed surfactant systems, lithium dodecyl sulfate (LiDS)/lithium perfluorooctane sulfonate (LiFOS) and lithium tetradecyl sulfate (LiTS)/LiFOS systems are also investigated from the standpoint of excess Gibbs energy and excess area. It is also clearly shown that the regular solution approach does not fit in the systems that contain ionic species. Copyright 2001 Academic Press.  相似文献   

3.
The adsorption, micelle formation, and coagel-particle formation of sodium dodecyl sulfate in the presence of calcium chloride were studied from the viewpoint of mixed adsorption and aggregate formation of inorganic salt and surfactant. Judging from the phase diagrams of adsorption and aggregate formation, negative azeotropy takes place in the mixed adsorption and aggregate formation of calcium chloride and sodium dodecyl sulfate due to electrostatic attraction between calcium and dodecyl sulfate ions. The miscibility of calcium chloride and sodium dodecyl sulfate in the oriented states increases in the order, particle > adsorbed film > micelle. The difference in the miscibility was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle. The particle-micelle equilibrium was thermodynamically considered by using the equilibrium composition of aggregates.  相似文献   

4.
The competitive binding of counterions to anionic dodecyl sulfate ions in aqueous solutions of cesium dodecyl sulfate (CsDS) and sodium dodecyl sulfate (SDS) mixtures, which significantly influences the critical micelle concentration (cmc) and surface (or interfacial) tension of surfactant solutions, was investigated. The cmc and degree of counterion binding were obtained through electrical conductivity measurements. The curve of cmc versus the mole fraction of CsDS in the surfactant mixture was simulated by Rubingh's equations, which enabled us to estimate the interaction parameter in micelles (W R) based on the regular solution approximation. The curve-fitting exhibited a slightly negative value (W R=−0.1), indicating that the mixing (SDS+CsDS) enhances micelle formation owing to a greater interaction between surfactant molecules and counterions than in pure systems (SDS). On going from SDS, SDS:CsDS(75:25), SDS:CsDS(50:50), SDS:CsDS(25:75) to CsDS, interfacial tension at the hexadecane/surfactant-solution interface showed a negative deviation from the mixing rule (interaction parameter in adsorbed film W A=−0.38), indicating the replacement of Na+ bound to anionic dodecyl sulfate by Cs+ ions owing to the stronger interaction between the Cs+ and the dodecyl sulfate ions. Droplet sizes of emulsion formed with hexadecane and aqueous dodecyl sulfate solutions were investigated using the light scattering spectrophotometer. The higher binding capacity of Cs+, having a smaller hydrated ionic size than Na+, also resulted in a negative deviation in emulsion droplet size in mixed systems. Received: 10 May 2000/Accepted: 11 August 2000  相似文献   

5.
The surface tension of an aqueous solution of a hexadecyltrimethylammonium bromide (HTAB) and dodecyltrimethylammonium bromide (DTAB) mixture was measured as a function of the total molality and the composition of DTAB at 298.15 K under atmospheric pressure. The phase diagrams of adsorption and micelle formation were constructed and the excess Gibbs energy was evaluated by analyzing the phase diagrams thermodynamically. Both the excess Gibbs energy in the adsorbed film and the excess surface area are negative; therefore the mutual interaction between HTAB and DTAB is said to be stronger than that between the same species and is enhanced with increasing adsorption. By combining the results with those obtained in previous studies, we claimed that DTAB molecules can use effectively the space among the hydrocarbon chains of HTAB molecules and their polar head groups take a staggered arrangement at the surface so as to reduce the electrostatic repulsion. Consequently the dispersion force between hydrophobic chains becomes stronger. Furthermore, the comparison of the excess Gibbs energy in the adsorbed film with that in the micelle shows that the staggered arrangement of molecules is not necessary in the spherical micelle.  相似文献   

6.
The surface tension of aqueous solutions of tetraethyleneglycol octyl ether (C8E4) and octyl-β-d-maltopyranoside (OM) mixture was measured as a function of the total molality of surfactants and the composition of OM under atmospheric pressure at 298.15 K by drop volume technique. The results of surface tension measurements were analyzed by originally developed thermodynamic equations, then phase diagrams of adsorption and micelle formation were constructed. From the analysis of the surface tension data, it was found that the C8E4 and OM molecules interact attractively in the adsorbed film and the excess Gibbs energy of adsorption can be compared with those observed in typical cationic–nonionic surfactant systems; nevertheless, they are mixed almost ideally in the mixed micelle. Judging from a negative excess surface area calculated by differentiating the excess Gibbs energy by the surface tension, we concluded that the attraction between C8E4 and OM molecules is a short-range one originated in the hydrogen bonding between them which favors the planar configuration.  相似文献   

7.
The interfacial tension of the aqueous solution of sodium dodecyl sulfate (SDS) and sodium decyl sulfate (SDeS) mixture against hexane was measured as a function of the total molality and composition of the surfactant mixture at 298.15 K under atmospheric pressure. The compositions of adsorbed film and micelle were evaluated numerically by applying the thermodynamic relations to the experimental results. These results were shown in the form of the phase diagrams of adsorption and micelle formation and compared with those of the aqueous solution of sodium perfluorooctanoate (SPFO) and SDeS mixture. It was found that the diagrams of SDS and SDeS system have swollen cigar shapes and are quite different from those of SPFO and SDeS system which show non-ideal mixing both in the adsorbed film and micelle. This finding was attributed to the fact that the interaction between fluorocarbon and hydrocarbon chains is weaker than that between hydrocarbon chains.  相似文献   

8.
To evaluate the effect of preferential surface adsorption of bromide ions on the synergism of homologous cationic surfactant mixtures reported previously, the surface tension of the aqueous solutions of the hexadecyltrimethylammonium chloride (HTAC)-dodecyltrimethylammonium bromide (DTAB) system was measured as a function of the total molality of surfactants and the relative proportion of DTAB at 298.15 +/- 0.05 K under atmospheric pressure. The excess Gibbs energies calculated from them were -2.6 kJ mol(-)(1) in the mixed adsorbed film and -2.0 kJ mol(-)(1) in the mixed micelle, respectively. A useful analytical procedure to evaluate the composition of individual ions (hexadecyltrimethylammonium, dodecyltrimethylammonium, chloride, and bromide ions) in the adsorbed film and micelle was developed and applied.  相似文献   

9.
Miscibility and interaction of decyldimethylphosphine oxide (DePO) with ammonium chloride (AC), hexylammonium chloride (HAC), and dodecylammonium chloride (DAC) in adsorbed films and micelles were studied by surface tension measurements. Phase diagrams were drawn for the mixed adsorption, mixed micelle formation, and equilibrium between adsorbed films and micelles. Nonideal mixing of DAC and DePO was characterized by a negative excess Gibbs free energy and positive excess area of adsorption and negative excess Gibbs free energy of micelle formation. It is concluded that the interaction between DAC and DePO in adsorbed films and micelles is larger than those between the same surfactants alone due to two factors: ion-dipole interactions between the head groups of DAC and DePO and alkyl-chain/alkyl-chain interactions.  相似文献   

10.
Montmorillonies separated from the bentonites SAz-1 (Cheto, AZ, USA), and Cressfield (New South Wales, Australia) were used as starting materials. Reduced charge montmorillonites (RCMs) were prepared from these chemically different and Li-saturated montmorillonites via heating at temperatures in the range of 120–300°C. The residual exchangeable Li+ cations were then replaced with tetramethylammonium (TMA+) or hexadecyltrimethylammonium (HDTMA+) cations and the ability of the modified montmorillonites to adsorb biphenyl was investigated. Lower adsorption was observed for Li-montmorillonites than for the organoclays. The extent of adsorption was dependent on both the layer charge of montmorillonite and the size of alkylammonium cations. HDTMA-forms prepared from unheated Li-montmorillonites adsorbed biphenyl better than the organoclays prepared from RCMs. In contrast, the TMA-samples prepared from the Li-montmorillonites that were not heated showed low uptake of biphenyl probably due to high content of TMA+ cations. Reduction of the layer charge, resulting in lower content of TMA+ cations, increased sorption efficiency of both TMA-montmorillonites. The best adsorbents of biphenyl were HDTMA-SAz-1 prepared from the unheated Li-SAz-1 and TMA-Cressfield prepared from the Li-form heated at 180°C. These samples removed about 80% of biphenyl from its aqueous solutions   相似文献   

11.
12.
The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.  相似文献   

13.
采用全原子分子动力学方法研究了抗衡离子为第一主族离子(Li+、Na+、K+、Rb+和Cs+)的十二烷基硫酸盐表面活性剂的气/液界面性质. 通过分析体系中各组分的密度分布曲线, 考察表面活性剂单分子层在界面的聚集形态, 并利用径向分布函数分析了表面活性剂极性头基与抗衡离子间的相互作用. 研究结果表明: 随着抗衡离子半径的增大, 不同体系的界面水层厚度依次增加, 表面活性剂极性头基与抗衡离子形成的Stern和扩散层厚度也相应增加. 但表面活性剂吸附层的抗衡离子缔合度以及体系表面张力却随抗衡离子半径的增大而减小. 研究表明抗衡离子的差异对十二烷基硫酸盐表面活性剂气/液界面性质有很大影响.  相似文献   

14.
The surface tension of the aqueous solutions of binary cationic surfactant mixtures of (1) dodecylammnonium chloride (DAC)-tetradecyltrimethylammonium chloride (TTAC), (2) decylammonium chloride (DeAC)-dodecyltrimethylammonium chloride (DTAC), and (3) DAC-DTAC was measured as a function of the total molality and composition of surfactants at 298.15 K. The compositions of surfactants in the adsorbed film and micelle were evaluated and the phase diagram of adsorption and that of micelle formation were constructed. Furthermore the excess Gibbs energies of adsorption and micelle formation were calculated to estimate the deviation from the corresponding ideal mixing. It was found that the surface and micelle are enriched in trimethylammonium salts in (1) and (2), while in ammonium salt in (3) compared to the bulk solution. On the other hand, the micelle is enriched in trimethylammonium salts compared to the surface at the critical micelle concentration (CMC) in all the systems. The miscibility of the surfactants was clarified from the standpoints of the structure of the head group and of the matching between the size of polar head group of surfactants and the difference in hydrocarbon chain length.  相似文献   

15.
The interaction of endocrine disruptor chemicals (EDCs) such as nonylphenol (NP) and β-estradiol with cationic micelle of hexadecyltrimethylammonium ion (HTA+) and a monolayer of HTA+ ion adsorbed at the electrode surface has been investigated in the presence of hydrophilic modified (2-hydroxypropyl)-β-cyclodextrin. NP, which has a similar structure to HTA+, decreased the critical micelle concentration (cmc) of hexadecyltrimethylammonium bromide more effectively. At the low HTA+ concentration, HTA+ inhibited the adsorption of I2. However, as the HTA+ concentration increased, a monolayer of HTA+ was formed at the electrode surface and caused the adsorption of iodine molecule (I2). In the presence of micelle, the I2 was dissolved in the micelle. Both EDCs caused the formation of HTA+ monolayer even at the HTA+ concentration below the cmc.  相似文献   

16.
17.
利用MPTC型气泡压力张仪研究了十二烷基硫酸钠(SDS)溶液在不同NaCl 浓度下的动态表面吸附性质, 分析了离子型表面活性剂在表面吸附层和胶束中形成双电层结构产生表面电荷对动态表面扩散过程和胶束性质的影响. 结果表明, SDS在表面吸附过程中, 表面电荷的存在会产生5.5 kJ·mol-1的吸附势垒(Ea), 显著降低十二烷基硫酸根离子(DS-)的有效扩散系数(Deff). 十二烷基硫酸根离子的有效扩散系数与自扩散系数(D)的比值(Deff/D)仅为0.013, 这表明SDS与非离子型表面活性剂不同, 在吸附初期为混合动力控制吸附机制. 加入NaCl可以降低吸附势垒. 当加入不小于80 mmol·L-1 NaCl后, Ea小于0.3 kJ·mol-1, Deff/D在0.8-1.2之间, 表现出与非离子型表面活性剂相同的扩散控制吸附机制. 同时, 通过分析SDS胶束溶液的动态表面张力获得了表征胶束解体速度的常数(k2). 发现随着NaCl 浓度的增大, k2减小, 表明SDS胶束表面电荷的存在会增加十二烷基硫酸根离子间的排斥力, 促进胶束解体.  相似文献   

18.
Mixed micelle formation and surface tension reduction effectiveness (γcmc) were investigated for the following systems: triethanolammonium dodecylpoly(oxyethylene)sulfate (TADPS, containing about two ethylene oxide units)/dodecyltrimethylammonium bromide, TADPS/hexadecyltrimethylammonium bromide and TADPS/hexadecylpyridinium chloride. For all these anionic/cationic systems, the mixed critical micelle concentration (cmc) values reflect a strong synergism in mixed micelle formation, with βM values ranging from −13.8 to −18.3. The mixed micelle composition is mixing-ratio dependent and, for equimolar mixtures, the mixed micelle is richer in the surfactant with the lower cmc. Precipitation is inhibited to a certain extent, thanks to the presence of ethylene oxide groups in the anionic species. The conditions for synergism in γcmc, differently expressed in the literature, can be derived from the surface tension equations established in our previous article. They can be conveniently described by a few characteristic constants: Γ i (saturated Gibbs excess), K i (constant in the Szyszkowski equation), the cmc of the individual surfactants and the interaction parameters, βS and βM, of their mixtures. Excellent agreement between theoretically predicted and experimental results is obtained. With the increase in surfactant chain length, the βM values decrease faster than the βS ones and this can result in the loss of synergism in γcmc. Received: 11 June 2000 Accepted: 4 September 2000  相似文献   

19.
Fluoropolymer films have been deposited in the glow and afterglow regions of radio frequency glow discharges fed with C2F6−H2 mixtures. Structure, growth rate, composition, and wettability of the films have been investigated by means of atomic force microscopy, electron spectroscopy for chemical analysis, secondary ion mass spectrometry, and water contact angle measurements.125I labeled baboon fibrinogen in baboon plasma has been used to study the adsorption of the protein onto the films. Protein retention, i.e., the binding affinity of the adsorbed protein, has been examined by elution with a sodium dodecyl sulfate solution. Adsorption and retention of fibrinogen were correlated using multivariate statistical methods with the wettability, the degree of film fluorination, and the CF x (1≤x≤3) group distribution of the coatings. This correlation identified the influence of each variable on the adsorption and retention of fibrinogen onto these substrates. These variables or surface properties can be easily balanced by properly tuning the experimental conditions of the glow discharge deposition process.  相似文献   

20.
Thermodynamic treatment of thin liquid films in Part III of this series was applied to foam films stabilized by sodium dodecyl sulfate. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed films at the film surfaces and transition between the black films were studied by measuring film thickness and contact angle. A discontinuous change in the thickness and a break on the contact angle vs. concentration curve appeared at the transition. Judging from the phase diagram of adsorption, sodium chloride and sodium dodecyl sulfate are a little miscible in the adsorbed films. The miscibility was ascribed to specific interaction between sodium ion and dodecyl sulfate ion in the adsorbed films. The miscibility in an adsorbed film was compared between the film surface and meniscus and between the common black and Newton black films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号