首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Summary Recently, Hughes et al. [11, 12] proposed new finite element schemes of Petrov-Galerkin type for solving the Stokes problem which do not require the discrete version of the Ladyshenskaya-Babuka-Brezzi-condition (LBB-condition). In this paper we derive a conforming finite element method for solving the stationary Navier-Stokes equations which combines the advantages of arbitrary finite element spaces for velocity/pressure with the favourable properties of the streamline diffusion method in the case of moderate and high Reynolds number.  相似文献   

2.
Summary We prove abstract error estimates for the approximation of the velocity and the pressure by a mixed FEM of quasi-Newtonian flows whose viscosity obeys the power law or the Carreau law. These estimates are optimal in some cases. They can be applied to most finite elements used for the solution of Stokes's problem.
Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau
Résumé On prouve des estimations d'erreur abstraites pour l'approximation de la vitesse et la pression par une MEF mixtes d'écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Ces estimations sont optimales dans certains cas. Elles peuvent être appliquées à la plupart des éléments finis utilisés pour la résolution du problème de Stokes.
  相似文献   

3.
In this paper we study a free boundary problem for the viscous, compressible, heat conducting, one-dimensional real fluids. More precisely, the viscosity is assumed to be a power function of density, i.e., μ(ρ)=ρα, where ρ denotes the density of fluids and α is a positive constant. In addition, the equations of state include and are more general than perfect flows which only depend linearly on temperature. The global existence (uniqueness) of smooth solutions is established with for general, large initial data, which improves the previous results. Moreover, it is also shown that the solutions will not develop vacuum, mass concentration or heat concentration in a finite time provided the initial data are bounded and smooth, and do not contain vacuum.  相似文献   

4.
Summary In this paper we present an algorithm for solving numerically the Stokes problem in the plane. The known algorithms are all based on certain discretization schemes for the analytic equations. In contrast to this recent work our algorithm uses an explicit analytic solution of a certain approximating problem, which can easily be solved numerically up to machine accuracy. On the one hand this analytic formula is based on a complex representation of all solutions of the Stokes differential equations, and on the other hand it is based on the conformal mapping of the given domain on the unit disc. Therefore, a central prerequisite of our corresponding program is a program for computing this conformal mapping.  相似文献   

5.
Summary. We formulate the compressible Stokes system given in (1.1) into a (new) weak formulation (2.1). A finite element method for this is presented. Existence and uniqueness of the finite element method is shown. An optimal error estimate for the numerical approximation is obtained. Numerical examples are given, showing its efficiency and rates of convergence of the approximate solutions that results from the discrete problem (3.1). Received October 20, 1996 / Revised version received January 21, 1999 / Published online: April 20, 2000  相似文献   

6.
Summary The present paper deals with the mathematical and numerical analysis of evolution problems in nonlinear small strains viscoelasticity of Burger's type. After a brief review of the mechanical model, the viscoelastic problem to be solved is written as an abstract evolution problem. The associated operator is proved to be maximal monotone, thus implying existence and uniqueness of solutions. This problem is then solved numerically by a backward Euler discretization in time, a finite element approximation in space and by using a preconditioned conjugate gradient algorithm for solving the resulting nonlinear algebraic systems. Numerical results are finally presented to illustrate the solution procedure.  相似文献   

7.
In this paper we present a new method to solve the 2D generalized Stokes problem in terms of the stream function and the vorticity. Such problem results, for instance, from the discretization of the evolutionary Stokes system. The difficulty arising from the lack of the boundary conditions for the vorticity is overcome by means of a suitable technique for uncoupling both variables. In order to apply the above technique to the Navier–Stokes equations we linearize the advective term in the vorticity transport equation as described in the development of the paper. We illustrate the good performance of our approach by means of numerical results, obtained for benchmark driven cavity problem solved with classical piecewise linear finite element.  相似文献   

8.
Summary. We derive a residual-based a posteriori error estimator for a stabilized finite element discretization of certain incompressible Oseen-like equations. We focus our attention on the behaviour of the effectivity index and we carry on a numerical study of its sensitiveness to the problem and mesh parameters. We also consider a scalar reaction-convection-diffusion problem and a divergence-free projection problem in order to investigate the effects on the robustness of our a posteriori error estimator of the reaction-convection-diffusion phenomena and, separately, of the incompressibility constraint. Received March 21, 2001 / Revised version received July 30, 2001 / Published online October 17, 2001  相似文献   

9.
This paper is concerned with an initial-boundary value problem for one-dimensional full compressible Navier-Stokes equations with inflow boundary conditions in the half space R+=(0,+). The asymptotic stability of viscous contact discontinuity is established under the conditions that the initial perturbations and the strength of contact discontinuity are suitably small. Compared with the free-boundary and the initial value problems, the inflow problem is more complicated due to the additional boundary effects and the different structure of viscous contact discontinuity. The proofs are given by the elementary energy method.  相似文献   

10.
The group theoretic method is applied for solving problem of a unsteady free-convective laminar boundary-layer flow on a non-isothermal vertical plate under the effect of an external velocity and a magnetic field normal to the plate. The application of two-parameter transformation group reduces the number of independent variables, by two, and consequently the system of governing partial differential equations with the boundary and initial conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. The Runge–Kutta shooting method used to find the numerical solution of the velocity field, shear stress, heat transfer and heat flux has been obtained. The effect of the magnetic field on the velocity field and the Prandtl number on the heat transfer and heat flux has been discussed.  相似文献   

11.
Summary We are concerned with bounds for the error between given approximations and the exact eigenvalues and eigenfunctions of self-adjoint operators in Hilbert spaces. The case is included where the approximations of the eigenfunctions don't belong to the domain of definition of the operator. For the eigenvalue problem with symmetric elliptic differential operators these bounds cover the case where the trial functions don't satisfy the boundary conditions of the problem. The error bounds suggest a certain defectminization method for solving the eigenvalue problems. The method is applied to the membrane problem.  相似文献   

12.
Summary The Tricomi problem with Neumann boundary condition is reduced to a degenerate problem in the elliptic region with a non-local boundary condition and to a Cauchy problem in the hyperbolic region. A variational formulation is given to the elliptic problem and a finite element approximation is studied. Also some regularity results in weighted Sobolev spaces are discussed.  相似文献   

13.
Summary The Neumann problem for a second order elliptic equation with self-adjoint operator is considered, the unique solution of which is determined from projection onto unity. Two variational formulations of this problem are studied, which have a unique solution in the whole space. Discretization is done via the finite element method based on the Ritz process, and it is proved that the discrete solutions converge to one of the solutions of the continuous problem. Comparison of the two methods is done.  相似文献   

14.
Summary. The purpose of this paper is to analyze a finite element approximation of the stationary Navier-Stokes equations that allows the use of equal velocity-pressure interpolation. The idea is to introduce as unknown of the discrete problem the projection of the pressure gradient (multiplied by suitable algorithmic parameters) onto the space of continuous vector fields. The difference between these two vectors (pressure gradient and projection) is introduced in the continuity equation. The resulting formulation is shown to be stable and optimally convergent, both in a norm associated to the problem and in the norm for both velocities and pressure. This is proved first for the Stokes problem, and then it is extended to the nonlinear case. All the analysis relies on an inf-sup condition that is much weaker than for the standard Galerkin approximation, in spite of the fact that the present method is only a minor modification of this. Received May 25, 1998 / Revised version received August 31, 1999 / Published online July 12, 2000  相似文献   

15.
Summary To avoid any numerical locking in the finite element approximation of viscoelastic flow problems, we propose a three-field approximation of this problem. This approximation, which involves velocities, stresses, and pressures is proved to converge for all times. In the proof, we also obtain convergence results for the three-fields finite element approximation of incompressible elasticity problems.  相似文献   

16.
Based on two-grid discretizations, some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed in this paper. These algorithms are motivated by the observation that for a solution to the Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One technical tool for the analysis is some local a priori estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids. Y. He was partially subsidized by the NSF of China 10671154 and the National Basic Research Program under the grant 2005CB321703; A. Zhou was partially supported by the National Science Foundation of China under the grant 10425105 and the National Basic Research Program under the grant 2005CB321704; J. Li was partially supported by the NSF of China under the grant 10701001. J. Xu was partially supported by Alexander von Humboldt Research Award for Senior US Scientists, NSF DMS-0609727 and NSFC-10528102.  相似文献   

17.
A posteriori error estimators for the Stokes equations   总被引:5,自引:0,他引:5  
Summary We present two a posteriori error estimators for the mini-element discretization of the Stokes equations. One is based on a suitable evaluation of the residual of the finite element solution. The other one is based on the solution of suitable local Stokes problems involving the residual of the finite element solution. Both estimators are globally upper and locally lower bounds for the error of the finite element discretization. Numerical examples show their efficiency both in estimating the error and in controlling an automatic, self-adaptive mesh-refinement process. The methods presented here can easily be generalized to the Navier-Stokes equations and to other discretization schemes.This work was accomplished at the Universität Heidelberg with the support of the Deutsche Forschungsgemeinschaft  相似文献   

18.
A problem of all particle methods is that they produce large vacuum regions when they are applied to a free gas flow, for example. With the approach recently proposed by the author [Numer. Math. (1997) 76: 111–142], this difficulty can be avoided. One can let the particles adapt their size to the local state of the fluid. How, is described in the present article. The diameter as an additional degree of freedom strongly improves the performance of the numerical methods based on this particle model. Received November 22, 1996 / Revised version received March 30, 1998  相似文献   

19.
Summary For a well known class of finite difference schemes for approximating incompressible flows it is shown that the condition of discrete incompressibility can be incorporated into the discrete space. This simplifies the structure of the linear or nonlinear discrete systems and reduces the number of unknowns.  相似文献   

20.
Summary The mixed finite element method for the linear elasticity problem is considered. We propose a systematic way of designing methods with optimal convergence rates for both the stress tensor and the displacement. The ideas are applied in some examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号