首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A new subgrid-scale (SGS) model for the thermal field is proposed. The model is an extended version of the mixed-timescale (MTS) SGS model for velocity field by Inagaki et al. (2005), which has been confirmed to be a refined SGS model for velocity field suited to engineering-relevant practical large eddy simulation (LES). In the proposed model for the thermal field, a hybrid timescale between the timescales of the velocity and thermal fields is introduced in a manner similar to velocity-field modeling. Thus, the present model dispenses with an ambiguous SGS turbulent Prandtl number, like the dynamic SGS model. In addition, the wall-limiting behavior of turbulence is satisfied, which is not in the original MTS model, by incorporating the wall-damping function for LES based on the Kolmogorov velocity scale proposed by Inagaki et al. (2010). The model performance is tested in plane channel flows at various Prandtl numbers, and the results show that this model gives the ratio of the timescales between the velocity and thermal fields similar to that obtained using the dynamic Smagorinsky model with locally calculated model parameters. It is also shown that the proposed model predicts better mean and fluctuating temperature profiles in cooperation with the revised MTS model for the velocity field, than the Smagorinsky model and the dynamic Smagorinsky model. The present model is constructed with fixed model parameters, so that it does not suffer from computational instability with the dynamic model. Thus, it is expected to be a refined and versatile SGS model suited for practical LES of the thermal field.  相似文献   

2.
基于Evans-Johnson模型提出了润滑油五参数流变模型,利用Evans-Johnson流变模型和五参数流变模型对润滑油的拖动系数进行计算,并与试验数据进行对比.结果表明,利用五参数流变模型预测的拖动曲线与试验曲线形状一致,预测精度较高.在热效应不显著的情况下,采用Evans-Johnson流变模型和五参数流变模型预测的拖动系数基本重合,与试验值接近;在热效应比较显著的区域,利用五参数模型预测的油膜温度值高于Evans-Johnson模型的预测值,对拖动系数的预测精度远大于Evans-Johnson模型的预测精度,解决了在热效应较显著的情况下流变模型对拖动力预测精度较低的难题.  相似文献   

3.
方型散流器空调室内空气流动的数值模拟   总被引:2,自引:0,他引:2  
 用N点风口动量模型和一个新零方程湍流模型对某办公室方型散 流器空调的室内温度场和速度场进行了模拟,并和实验数据进行对比. 结果表明,计算所得速度和温度分布与实测值吻合得很好,所用的风 口模型和湍流模型能快速地将方型散流器空调通风的温度和速度场合 理地模拟出来,可用于指导和优化同类空调通风气流组织设计.  相似文献   

4.
徐巍  王立峰  蒋经农 《力学学报》2015,47(5):751-761
基于应变梯度理论建立了单层石墨烯等效明德林(Mindlin) 板动力学方程,推导了四边简支明德林中厚板自由振动固有频率的解析解. 提出了一种考虑应变梯度的4 节点36 自由度明德林板单元,利用虚功原理建立了单层石墨烯的等效非局部板有限元模型. 通过对石墨烯振动问题的研究,验证了应变梯度有限元计算结果的收敛性. 运用该有限元法研究了尺寸、振动模态阶数以及非局部参数对石墨烯振动特性的影响. 研究表明,这种单元能够较好地适用于研究考虑复杂边界条件石墨烯的尺度效应问题. 基于应变梯度理论的明德林板所获得石墨烯的固有频率小于基于经典明德林板理论得到的结果. 尺寸较小、模态阶数较高的石墨烯振动尺度效应更加明显. 无论采用应变梯度理论还是经典弹性本构关系,考虑一阶剪切变形的明德林板模型预测的固有频率低于基尔霍夫(Kirchho) 板所预测的固有频率.   相似文献   

5.
Following a model for the sintering of a row of grains by Sun et al. (1996), a simplified model is developed for cavity growth along a grain-boundary by surface and grain-boundary diffusion. The cavity surface is approximated by two arcs of equal radius truncated by the grain-boundary. The arcs evolve by changing the radius and the intersection angle they make with the grain-boundary. A variational principle for the coupled diffusion problem is used to obtain the rate equations for the two degrees of freedom which are numerically integrated to follow the cavity growth. The simplified model can be reduced to the well established equilibrium cavity growth model for the limiting case of fast surface diffusion. A validity map for the model is constructed by comparing the approximate solutions with full numerical solutions over a wide range of values of relative diffusivity, initial dihedral angles and applied stresses. It is found that the simplified solution can be used under most of the practical conditions. The model described here is two dimensional although the approach can be easily extended to axisymmetric cases.  相似文献   

6.
A constitutive law describing the Reynolds stresses in boundary layers undergoing laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, is used to improve an algebraic intermittency model for cases with transition in a separated layer influenced by a high level of free-stream turbulence. The intermittency model is combined with a k-ω turbulence model and the basic version, developed in previous work, functions well for bypass transition in attached boundary layers and for transition in separated boundary layers under a low free-stream turbulence level. The basic model version is extended by an additional production term in the transport equation for turbulent kinetic energy. A sensor detects the front part of a separated layer and activates the production term. The term expresses the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. The Klebanoff streaks cause faster breakdown by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level. The extended model does not alter the results of the basic model version for bypass transition in an attached boundary layer and for transition in a separated boundary layer under a low free-stream turbulence level. The extended model significantly improves the predictions of the previous model version for transition in a separated boundary layer under a high free-stream turbulence level.  相似文献   

7.
In this paper, the dynamic behaviour of free layer damping beams with thick viscoelastic layer is analysed. A homogenised model for the flexural stiffness is formulated employing Reddy and Bickford’s quadratic shear in each layer, in contrast to the classical model of Oberst and Frankenfeld for thin beams, which does not take into account shear deformations. The results provided by these two models in free and forced vibration are compared by means of finite element procedures with those of a 2D model, which considers extensional and shear stress, and longitudinal, transverse and rotational inertias.The viscoelastic material is characterised by a fractional derivative model, which takes into consideration the variation of the complex modulus with frequency. To avoid the frequency dependence of the stiffness matrices, the extraction of the eigenvalues and eigenvectors is completed by a new iterative method developed by the authors. The frequency response to a harmonic force is deduced by the superposition of modal contribution functions.From these numerical applications it can be concluded that the model for thick beams provides sufficient accuracy for practical applications, able to reproduce the mechanical behaviour of free layer damping beams with thick viscoelastic layer, reducing the storage needs and computational time with respect to a 2D model.  相似文献   

8.
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the wellknown EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application. The project sponsored by the Foundation for Doctorate Thesis of Tsinghua University, and the National Key Project in 1999–2004 sponsored by the Ministry of Science and Technology of China  相似文献   

9.
基于径向基函数的机翼二维气动代理模型设计   总被引:2,自引:0,他引:2  
采用多学科设计优化方法进行机翼气动/结构优化时,结构学科的优化需要气动学科提供机翼压力分布的代理模型。本文引入了等参单元形函数的几何变换思想,利用径向基函数,解决了复杂形状机翼的二维气动代理模型的构造问题,进行了某巡航导弹弹翼考虑结构变形的气动力代理模型的构建。算例结果表明,本文所用代理模型构造方法简单易行,预测结果的精度很好。  相似文献   

10.
根据某矿区的地质钻孔资料,划分了不同层面并对地层的交叉与缺失做了处理. 利用不同 层面的高程值建立不同层面的等高线,再由Kriging插值法得到矿区的三维地层模型. 从所 建模型中抽取剖面图并与矿区实际勘探线剖面图进行比较,验证了模型的可靠性. 最后从建 立的多层DEM模型中抽取剖面数据进行有限元数值模拟,并与实际勘探和采掘过程中揭露的 断层位置比较,两者结果非常吻合,为该矿区采掘设计和构造预测提供了一定的参考.  相似文献   

11.
A new well test model for a vertical fractured well is developed based on a discrete-fracture model in which the fractures are discretized as one dimensional (1-D) entities. The model overcomes the weakness of complex meshing, a large number of grids, and instability in conventional stripe-fracture models. Then, the discrete-fracture model is implemented using a hybrid element finite-element method. Triangular elements are used for matrix and line elements for the fractures. The finite element formulation is validated by comparing with the semi-analytical solution of a single ver-tical fractured well. The accuracy of the approach is shown through several examples with different fracture apertures, fracture conductivity, and fracture amount. Results from the discrete-fracture model agree reasonably well with the stripe-fracture model and the analytic solutions. The advantages of the discrete-fracture model are presented in mesh gen-eration, computational improvement, and abilities to handle complex fractures like wedge-shaped fractures and fractures with branches. Analytical results show that the number of grids in the discrete-fracture model is 10%less than stripe-fracture model, and computational efficiency increases by about 50%. The more fractures there are, the more the com-putational efficiency increases.  相似文献   

12.
A large eddy simulation (LES) coupled with a Lagrangian stochastic model has been applied to the study of droplet dispersion in a turbulent boundary layer. Droplets are tracked in a Lagrangian way. The velocity of the fluid particle along the droplet trajectory is considered to have a large-scale part and a small-scale part given by a modified three-dimensional Langevin model using the filtered subgrid scale (SGS) statistics. An appropriate Lagrangian correlation timescale is considered in order to include the influences of gravity and inertia. Two-way coupling is also taken into account. The inter-droplet collision has been introduced as the main mechanism of secondary breakup. A stochastic model for breakup has been generalized for coalescence simulation, thereby two phenomena, coalescence and breakup are simulated in the framework of a single stochastic model. The parameters of this model, selectively for coalescence and for breakup, are computed dynamically by relating them to the local resolved properties of the dispersed phase compared to the main fluid. The model is validated by comparison with an agglomeration model and with experimental results on secondary breakup. The LES coupled with Lagrangian particle tracking and the model for droplet coalescence and breakup is applied to the study of the atmospheric dispersion of wet cooling tower plumes. The simulations are done for different droplet size distributions and volume fractions. We focused on the influence of these parameters on mean concentration, concentration variance and mass flux profiles.  相似文献   

13.
本文建立基于微裂纹扩展的岩石弹塑性损伤微观力学模型。用自洽方法考虑裂隙间相互影响,压缩载荷下微裂纹尖端翼裂纹稳定扩展表征岩石的微观损伤,基于应变能密度准则用Newton迭代法求复合型断裂的翼裂纹扩展长度,并采用微裂隙统计的二参数Weibull函数模型反映绝对体积应变对微裂纹分布数目影响,进而用翼裂纹扩展所表征的应力释放体积和微裂纹数目来表示含有微裂隙的岩石损伤演化变量;宏观塑性屈服函数采用Voyiadjis等的等效塑性应变的硬化函数,反映塑性内变量对硬化函数的影响;建立岩石的弹塑性损伤本构关系及其数值算法,并用回映隐式积分算法编制了弹塑性损伤模型的程序。从围压和微裂隙长度等因素分析弹塑性损伤模型的岩石的损伤和宏观塑性特性。  相似文献   

14.
霍岩  郜冶 《计算力学学报》2013,30(1):117-123
利用基于Vreman亚格子模型的大涡模拟技术对有开口的单室和双室房间内热驱动流进行了数值模拟,利用函数分析法定量分析了模拟结果的准确性,并与Smagorinsky亚格子模型的模拟结果进行了比较.结果表明,Vreman和Smagorinsky亚格子模型的计算结果均能够满足工程的需求,但Vreman亚格子模型在开口附近区域的温度和U速度计算结果在整体上比Smagorinsky亚格子模型更接近实验值;Vreman亚格子模型未像Sma-gorinsky亚格子模型那样过高地估算壁面附近高温区域的粘性耗散;对于单室房间内热烟气层高度的预测,采用Vreman模型得到的计算结果准确性比Smagorinsky亚格子模型提高近50%.  相似文献   

15.
Based on the Zufiria theoretical model, a new model regarding the asymptotic bubble velocity for the Rayleigh-Taylor (RT) instability is presented by use of the complex velocity potential proposed by Sohn. The proposed model is an extension of the ordinary Zufiria model and can deal with non-ideal fluids. With the control variable method, the effect of the viscosity and surface tension on the bubble growth rate of the RT instability is studied. The result is consistent with Cao’s result if we only consider the viscous effect and with Xia’s result if we only consider the surface tension effect. The asymptotic bubble velocity predicted by the Zufiria model is smaller than that predicted by the Layzer model, and the result from the Zufiria model is much closer to White’s experimental data.  相似文献   

16.
In this paper, a fluid–structure interaction model for stability analysis of shells conveying fluid is developed. This model is developed for shells of arbitrary geometry and structure and is based on incompressible potential flow. The boundary element method is applied to model the potential flow. The fluid dynamics model is derived by using an inflow/outflow model along with the impermeability condition at the fluid–shell interface. This model is applied to obtain the flow modes and eigenvalues, which are used for the modal representation of the flow field in the shell. Based on the mode shapes and natural frequencies of the shell obtained from an FEM model, the modal analysis technique is used for structural modeling of the shell. Using the linearized Bernoulli equation for unsteady pressure on the fluid–shell interface in combination with the virtual work principle, the generalized structural forces are obtained in terms of the modal coordinates of the fluid flow and the coupled field equations of the fluid–structure are derived. The obtained model is validated by comparison with results in the literature, and very good agreement is demonstrated. Then, some examples are provided to demonstrate the application of the present model to determining the stability conditions of shells with arbitrary geometries.  相似文献   

17.
The method of measurement of a three-dimensional photoelastic model with rotated principal axes has not yet been fully experimentally established. It is known that a three-dimensional photoelastic model can be reduced to an optically equivalent model. In this paper, the optically equivalent model is realized from a stratified model consisting of two layers of the frozen stress model. The secondary principal stress direction and the relative phase retardation of the frozen disk model in the stratified frozen stress model are determined for the entire field from Stokes parameters obtained by scattered-light photoelasticity using unpolarized light. The accuracy of these values is confirmed by a comparison with results only from the frozen stress disk model.  相似文献   

18.
The pressure drop of microchannels filled with arrays of numerous pillars drastically increases while scaling-down in particular for the low micrometer scale. In this study, one numerical model and two mathematical models are developed to predict the pressure drop of such systems through the dimensionless permeability by using the unit cell technique. The numerical model includes the effects of complex geometries and inertia forces. The first mathematical model is derived from the Stokes equation and can be used for simplified problems. The second mathematical model combines the numerical and first mathematical model by using a 5D-Lagrange approximation to include geometrical and inertia effects. In this model, the support points are obtained by numerical simulation to adjust the result of the first mathematical model. All models show a similar trend to experimental results from the literature. With the result of the developed models, the pressure drop can be predicted for a wide range of applications.  相似文献   

19.
Three models are considered for single component, single phase flow in naturally fractured porous media. The microscopic model holds on the Darcy scale, and it is considered to govern the system. The macroscopic, dual-porosity model was derived in Part I of this work from the microscopic model by two-scale mathematical homogenization. In this paper, we show that the dual-porosity model predicts well the behavior of the microscopic model by comparing their computed solutions in certain reasonable test cases. Homogenization gives a complex formula for a key parameter in the dual-porosity model; herein a simple approximation to this formula is presented. The third model considered is a single-porosity model with averaged parameters. It is shown that this type of model cannot predict the behavior of the microscopic flow.This work was supported in part by the National Science Foundation and by the State of Texas Governor's Energy Office.  相似文献   

20.
This paper deals with the double-constraint methodology for calibration of steady-state groundwater flow models. The methodology is based on updating the hydraulic conductivity of the model domain by comparing the results of two forward groundwater flow models: a model in which known fluxes are specified as boundary conditions and a model in which known heads are specified as boundary conditions. A new zone-integrated double-constraint approach is presented by partitioning the model domain in zones with presumed constant hydraulic conductivity (soft data), and the double-constraint methodology is reformulated accordingly. The feasibility of the method is illustrated by a practical case study involving a numerical steady-state groundwater flow model with about 3 million grid blocks, subdivided into four zones corresponding to the major hydrogeological formations. The results of the zone-integrated double-constraint method for estimating the horizontal and vertical hydraulic conductivities of the zones compare favourably with a classical model calibration based on minimisation of the differences between calculated and measured heads, while the double-constraint method proves to be more robust and computationally less cumbersome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号