首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The self-aggregation behavior of two amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer samples with nearly identical PHB block lengths but different PEO block lengths, PEO-PHB-PEO(2000-810-2000) and PEO-PHB-PEO(5000-780-5000), was studied with dynamic and static light scattering (DLS and SLS), in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). The formation of polymeric micelles by the two PEO-PHB-PEO triblock copolymers was confirmed with fluorescence technique and TEM. DLS analysis showed that the hydrodynamic radius (R(h)) of the monodistributed polymeric micelles increased with an increase in PEO block length. The relative thermostability of the triblock copolymer micelles was studied by SLS and DLS at different temperatures. The aggregation number and the ratio of the radius of gyration over hydrodynamic radius were found to be independent of temperature, probably due to the strong hydrophobicity of the PHB block. The combination of DLS and SLS studies indicated that the polymeric micelles were composed of a densely packed core of hydrophobic PHB blocks and a corona shell formed by hydrophilic PEO blocks. The aggregation numbers were found to be approximately 53 for PEO-PHB-PEO(2000-810-2000) micelles and approximately 37 for PEO-PHB-PEO(5000-780-5000) micelles. The morphology of PEO-PHB-PEO spherical micelles determined by DLS and SLS measurements was further confirmed by TEM.  相似文献   

2.
Aggregation and disaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, Pluronics P103 and P104, in aqueous solutions during a heating and cooling cycle were investigated by dynamic laser scattering (DLS) and 1H NMR spectroscopy. Temperature hysteresis was observed by DLS when cooling the copolymer aqueous solutions because larger aggregates existed at temperatures lower than critical micellization temperature (CMT), but no temperature differences were observed by NMR. This phenomenon was explained as the forming of water-swollen micelles at temperatures lower than CMT during the cooling process.  相似文献   

3.
Room temperature phosphorescence (RTP) of 6-bromo-2-naphthol has been investigated in aqueous micellar solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers as well as in their mixed aggregates with sodium dodecyl sulfate. RTP of the phosphorophor was enhanced to some extent in the micelles of the block copolymers. However, marked enhancement of RTP was observed in the mixed aggregates. The enhancement of RTP is attributed to effective incorporation of the phosphorophor into the micelles and the aggregates, resulting in suppression of nonradiative deactivation of the phosphorescent state.  相似文献   

4.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

5.
The aim of this study is to determine the effects of oil solutes and alcohol cosolvents on the structure of oil-in-water microemulsions stabilized by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The systems investigated involved the solubilization of 1,3,5-trimethylbenzene or 1,2-dichlorobenzene by P123 (EO(20)-PO(70)-EO(20)) pluronic surfactant micelles in water and water + ethanol solvents. The structures of these swollen micelles were determined by small-angle neutron scattering (SANS). A thermodynamic model was employed to interpret the characterization data. The results of the thermodynamic model for micellization agreed well with the SANS data from samples of micelles swollen by both oils. The model predicted the size of the micelles within 5% accuracy using only one fitting parameter, the micelle polydispersity. Ethanol had significantly different effects on the polymer micelles that contained solubilized oil compared to pure polymer micelles. For pure polymer micelles, the addition of ethanol increased the solubility of the polymer and, therefore, decreased the total volume fraction of micelles, while for polymer-oil aggregates, ethanol tended to have a positive effect on the volume fraction of micelles. SANS results showed that the greatest divergence from pure aqueous solvent results occurred at oil concentrations above the microemulsion stability limit.  相似文献   

6.
We report here on the effects that the solution properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers have on the reduction of hydrogen tetrachloroaurate(III) hydrate (HAuCl4.3H2O) and the size of gold nanoparticles produced. The amphiphilic block copolymer solution properties were modulated by varying the temperature and solvent quality (water, formamide, and their mixtures). We identified two main factors, (i) block copolymer conformation or structure (e.g., loops vs entanglements, nonassociated polymers vs micelles) and (ii) interactions between AuCl4- ions and block copolymers (attractive ion-dipole interactions vs repulsive interactions due to hydrophobicity), to be important for controlling the competition between the reactivities of AuCl4- reduction in the bulk solution to form gold seeds and on the surface of gold seeds (particles) and the particle size determination. The particle size increase observed with increased temperature in aqueous solutions is attributed to enhanced hydrophobicity of the block copolymer, which favors AuCl4- reduction on the surface of seeds. The lower reactivity and higher particle sizes observed in formamide solutions are attributed to the shielding of ion-dipole interaction between AuCl4- ions and block copolymers by formamide, which overcomes the beneficial effects of formamide on the block copolymer conformation (lower micelle concentration).  相似文献   

7.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

8.
The effects caused by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO; Pluronic) copolymers on the structure and stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were studied by means of turbidity, leakage, and cryo-transmission electron microscopy investigations. The results show that by inclusion of Pluronics in the DOPE dispersion it is possible to stabilize the lamellar Lalpha phase and to produce liposomes that are stable and nonleaky at low pH (pH 5). The stabilizing capacity was observed to depend critically on the molecular composition of the Pluronics. Block copolymers with comparably long PPO and PEO segment lengths, such as F127 and F108, most effectively protected DOPE liposomes prepared at high pH from aggregation and subsequent structural rearrangements induced by acidification. A sufficiently long PPO block was found to be the most decisive parameter in order to obtain adequate coverage of the liposome surface at low Pluronic concentrations. Upon increasing the copolymer concentration, however, Pluronics with comparably short PPO and PEO segment lengths, such as F87 and P85, could also be used to stabilize the DOPE liposomes. Essentially the same trends were observed when the Pluronics were added to preformed DOPE liposomes instead of being included in the preparation mixture. In this case the least effective copolymers failed, however, to completely prevent the DOPE liposomes from releasing encapsulated hydrophilic markers.  相似文献   

9.
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.  相似文献   

10.
The self-diffusion of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers dissolved in deuterated water was investigated by means of pulsed field gradient NMR (PFG-NMR). The polymer forms micelles in the solution and, with increasing temperature, clouding and phase demixing occurs. The self-diffusion coefficient indicates the association of the polymer molecules in the vicinity of the cloud point because of its maximum with increasing temperature. Above the cloud point, two kinds of diffusing species are observed due to phase separation. The faster diffusing species is attributed to the polymer-poor phase. The self-diffusion coefficient of the polymer-rich phase species decreases with increasing temperature above the cloud point due to further association and dehydration. The correlation length of the diffusing associates, calculated from the self-diffusion coefficient and the viscosity by means of the Stokes-Einstein equation is nearly independent of temperature and concentration up to 30 wt-% polymer concentration. The correlation length is about 1.4 nm. It shows a slight maximum at the cloud point.  相似文献   

11.
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations.  相似文献   

12.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

13.
Aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO109-PPO41-PEO109) copolymers are nonionic surfactants that self-organize to form aggregate structures with increasing temperature or concentration. We have studied two concentrations over a range of temperatures so that the copolymers are in one of three microphases: unimers, micelles, or hydrogels formed from body centered cubic aggregates of micelles. Three different coumarin dyes were chosen based on their hydrophobicity so that different aggregate regions could be probed independently-water insoluble coumarin 153 (C153), hydrophobic coumarin 102 (C102), and the hydrophilic sodium carboxylate form of coumarin 343 (C343-). Fluorescence anisotropy experiments provide detailed information on the local microviscosity. C153 experiences a fourfold increase in reorientation time and hence microviscosity with increasing temperature through the microphase transition from unimers to micelles. C102 also shows an increase in microviscosity with temperature but smaller in magnitude and with the microphase transition shifted to higher temperature relative to C153. C343- shows only a slight sensitivity to the microphase transition. For any of the three coumarin probes, fluorescence anisotropies do not show any correlation with the microphase transition to form cubic hydrogels.  相似文献   

14.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

15.
16.
Amphiphilic block copolymers, methoxy poly(ethylene glycol)-b-poly(valerolactone) (mPEG-b-PVL), were synthesized via ring opening polymerization of δ-valerolactone in the presence of methoxy poly(ethylene glycol) (mPEG). The copolymers form micelle-like nanoparticles by their amphiphilic characteristics and their structures were examined by Nuclear Magnetic Resonance (NMR). The sizes of nanoparticles ranged from 60 to 120 nm as measured by dynamic light scattering detection, and were larger with higher molecular weight of the copolymers. The Critical Micelle Concentration (CMC) of these nanoparticles in water decreased with increasing molecular weight of hydrophobic segment. Stability analysis showed that the micellar solutions maintain their sizes at 37 °C for six weeks without aggregation or dissociation. The lyophilization method was better than the evaporation method when camptothecin (CPT) was incorporated to the micelles. The former method yielded higher CPT loading efficiency and lower aggregation. The loading efficiency of CPT could be more than 96% and a steady release rate of CPT was kept for twenty six days. Moreover, the mPEG-b-PVL polymeric micelles offered good protection of CPT lactone form at 37 °C for sixteen days. The copolymers showed no cytotoxicity towards L929 mouse muscular cells when incubated for one day. Taken together, the mPEG-b-PVL copolymer has potential to be used for the delivery of CPT or other similar drugs.  相似文献   

17.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Poly(ethylene oxide-)-poly(1, 1-dimethyl-2, 2-dihexyldisilene) block copolymers (PEO-b-PMHS) were synthesized by the anionic polymerization of masked disilenes initiated with the potassium alkoxide of poly(ethylene glycol). The block copolymer self-assembled into polymer micelles in water accompanied by a transition in the polysilane conformation.  相似文献   

19.
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.  相似文献   

20.
Melting points and lamellar thicknesses have been measured for ethylene oxide–propylene oxide block copolymers (sym-PEP) with central poly(ethylene oxide) block lengths of 70–100 chain units and end poly(propylene oxide) block lengths of 0–30 chain units. Melting points of the block copolymers are lower than those of the corresponding poly(ethylene oxide) homopolymer by an amount (up to 15°C) which increases as the poly(propylene oxide) block length increases. Most samples have more than one melting transition, which can be assigned to variously folded chain crystals. End interfacial free energies σe for the various crystals have been estimated by use of Flory's theory of melting of block copolymers. For a given crystal type (e.g., once-folded-chain) σe is higher the longer the chain length of the end poly(propylene oxide) blocks. For a given copolymer σe is lower, the more highly folded the poly(ethylene oxide) chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号