首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Poly (diallyldimethylammonium chloride) (PDDA) and ammonium polyphosphate (APP) deionized chloride ions and ammonium ions by ionizing in aqueous solution respectively, then combined to form poly (diallyldimethylammonium) and polyphosphate (PAPP) polyelectrolyte complexes as an all‐in‐one flame retardant for polypropylene and its composites were characterized by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy. One flame retardant system composed of PAPP and PP, the other flame retardant system composed of PAPP, Polyamide‐6 (PA6) and PP were tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests and thermogravimetric analysis (TGA) and compared with pure PP. The results showed that the LOI value of PP/PAPP composite can reach 27.5%, and UL‐94 V‐2 rating can be reached at 25 wt% PAPP loading. Meanwhile the cone calorimetry results displayed that the peak heat release rate (PHRR) and total heat release (THR) were reduced up to 69.3% and 22.5%, respectively, compared with those of pure PP. After adding 5 wt% PA6, the carbon source missing due to the early PAPP decomposition can be made up, and PHRR and THR can be further reduced slightly. The flame retardant mechanism of PAPP was studied by FTIR spectroscopy and X‐ray photoelectron spectroscopy. Six‐membered ring of C─N containing conjugate double bonds, cross‐linked phosphate structure formed stable, intumescent, compact char layer which greatly improved the flame retardancy of PP.  相似文献   

3.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Three different boron containing materials, zinc borate (ZnB), borophosphate (BPO4), and boron and silicon containing oligomer (BSi), were used to improve the flame retardancy of melamine cyanurate (MC) in a polyamide‐6 (PA‐6) matrix. The combustion and thermal degradation characteristics were investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis‐Fourier transform infrared spectroscopy (TGA‐FTIR), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). All the three boron compounds showed no synergistic effect with MC, and only BPO4 at high loadings showed comparable LOI values by increasing the dripping rate. For ZnB and BSi glassy film and char formation decreases the dripping rate and sublimation of melamine and give rise to low LOI. According to TGA‐FTIR results, addition of boron compounds does not alter the gaseous product distribution of both MC and PA‐6. The addition of boron compounds affects flame retardancy through physical means. It was noted from the TGA data that boron compounds reduced the decomposition temperature of both MC and PA‐6, also affecting the flame retardancy negatively by premature degradation of MC at low temperatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Melamine polyphosphate (MPP) and halloysite nanotubes (HNT) were introduced to polyamide 6 (PA6) by melt blending in order to improve the fire resistance. PA6 composite containing 12% flame retardants with good spinnability was obtained. The flammability of PA6 composite was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter (CONE) tests. The results indicated that the LOI value could reach 24.0 vol.% and UL‐94 rating could achieve V2 level at the presence of 12% flame retardants. CONE data demonstrated that peak heat release rate was significantly reduced from 554 kW/m2 of neat PA6 to 368 kW/m2 of the sample containing flame retardants. Thermal analysis indicated that the thermal stability and char formation were improved by the presence of flame retardants. The morphology of residue char was characterized by scanning electron microscopy; and it suggested that a network‐structured protective char layer had been formed. The possible synergism between MPP/HNT and their flame retardant mechanism was also analyzed and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Phosphorus/nitrogen‐containing advanced epoxy resins were obtained by chain‐extension of the diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin with phosphorus‐modified triglycidyl isocyanurate (TGICP). The structure of TGICP was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Differential scanning calorimetry revealed that the EP/TGICP composites possessed higher glass transition temperatures than that of phosphorus free EP. The thermal stability and flame retardant properties of the epoxy resin/TGICP systems were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test (UL‐94) test. When the TGICP content was 10 wt%, the LOI value of epoxy resin system was as high as 35.0% and it can obtain the V‐0 grade in UL‐94 protocol. From microscale combustion calorimetry (MCC) measurement, it was found that the addition of TGICP reduced the value of peak heat release rate and total heat release. The thermal degradation process of EP and EP/TGICP composite was monitored by real time FTIR. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphology and chemical components of the char residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, a novel sulfur‐based flame retardant (SA‐M) was synthesized by the self‐assembly of melamine and sulfamic acid. The chemical structure of SA‐M was fully characterized. SA‐M, in company with Al2O3, was then introduced into polyamide 11 (PA 11) by melt compounding in order to improve the fire resistance of the polymer substrate. The observation by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) indicated the well dispersion of SA‐M in PA 11 matrix. The fire performance of PA 11 composites was evaluated by limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimeter tests, respectively. The results showed that the presence of 17.5% SA‐M and 2.5% Al2O3 increased the LOI value from 22.4% to 30.9%, upgraded the UL‐94 rating from no rating to V‐0, significantly eliminated the melt dripping, and decreased the peak heat release rate from 1024 to 603 kW/m2. The thermal behaviors were investigated by thermogravimeric analysis (TGA) and TGA‐Fourier transform infrared spectroscopy (FTIR). It was suggested that SA‐M took effects mainly in gas phase by diluting the combustible fuel, leading to the improvement of the fire resistance of PA 11.  相似文献   

8.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

9.
The performances of the novel intumescent flame retardant (IFR) polypropylene (PP) composites containing melamine phosphate (MP) and tris(1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]methylene‐4)phosphate (TPMP) were investigated. The flame retardancy of IFR‐PP system was characterized by limiting oxygen index (LOI) and UL 94 and cone calorimeter. The morphology of the char obtained after cone calorimeter testing was studied by scanning electron microscopy (SEM). The thermal oxidative degradation (TOD) of the composites was investigated by using thermogravimetric analysis (TGA) and real‐time Fourier transform infrared spectroscopy (RT‐FTIR). Compared with the PP/ TPMP or PP/ MP binary composite, at the same addition level, the LOI values of the PP/MP/TPMP ternary composites increase and reach V‐0 at the suitable MP/TPMP ratio. The results of TGA and RT‐FTIR showed the existence of the interaction between IFR and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

11.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

12.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A series of thermotropic liquid crystalline polyesters containing phosphorus and aromatic ether groups (TLCP‐AEs) were synthesized from p‐acetoxybenzoic acid (p‐ABA), terephthalic acid (TPA), 4,4′‐oxybis(benzoic acid) (OBBA), and acetylated 2‐(6‐oxid‐6H‐dibenz(c,e) (1,2) oxaphosphorin 6‐yl) 1,4‐benzenediol (DOPO‐AHQ). The chemical structure and the properties of TLCP‐AEs were characterized by Fourier‐transform spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), thermogravimetry analysis (TGA), scanning electronic microscopy (SEM), polarizing optical microscopy (POM), limiting oxygen index, and UL‐94 tests, respectively. The results showed that TLCP‐AEs had low and broad mesophase temperatures (230–400 °C). TLCP‐AEs also showed excellent thermal stability; their 5%‐weight‐loss temperatures were above 440 °C and the char yields at 700 °C were higher than 45 wt %. All TLCP‐AE polyesters exhibited high flame retardancy with a LOI value of higher than 70 and UL‐94 V‐0 rating. The SEM observation revealed that TLCP‐AEs had good fibrillation ability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1182–1189, 2010  相似文献   

14.
Microencapsulated ammonium polyphosphate with an epoxy resin (EP) shell (MCAPP) was prepared by in situ method, and was characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and thermgravimetric analysis (TGA). Compared to ammonium polyphosphate (APP), MCAPP has smaller particle sizes and lower water solubility. The effect of MCAPP on the fire performance of EP was studied by using limiting oxygen index (LOI) and UL‐94 tests. When the same loading levels of APP or MCAPP were added into EP, the LOI and UL‐94 tests show similar results. Tensile, bending, and impact strengths of the EP/APP and EP/MCAPP composites were also evaluated, and the results indicate that MCAPP has much less negative influence on the mechanical properties than APP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Microencapsulated ammonium polyphosphate (MCU‐APP) with urea–melamine–formaldehyde (UMF) resin is prepared by in situ polymerization, and is characterized by FTIR and XPS. The microencapsulation of APP with the UMF resin leads to a decrease in the particle's water solubility. The flame retardant actions of MCU‐APP and APP in PP are studied using limiting oxygen index (LOI) and UL‐94 test, and their thermal stability is evaluated by thermogravimetric analysis. It is found that the LOI value of the PP/MCU‐APP composite is higher than the value of the PP/APP composite. In comparison with the PP/MCU‐APP composites, the LOI values of the PP/MCU‐APP/DPER ternary composites at the same additive loading increase, and UL‐94 ratings of most ternary composites are raised to V‐0. The water‐resistant properties of the PP composites containing APP and MCU‐APP are studied. Moreover, the combustion behavior of the PP composites is investigated by the cone calorimeter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

17.
In this work, we reported the synthesis, characterization of Ce‐doped titania nanotubes (Ce‐TNTs), and application in flame retardancy of an intumescent flame‐retardant polystyrene (PS/IFR) system. The flame retardancy of polystyrene (PS) composite that was composed of pentaerythritol, microencapsulated ammonium polyphosphate, and PS was enhanced significantly by adding a small amount (0.1 wt%) of (Ce‐TNTs). The thermal properties of the flame‐retardant PS were investigated by thermogravimetric analysis, limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy, dynamic mechanical thermal analysis, and the real‐time Fourier transform infrared spectrometry (FTIR). The maximal decomposition rate temperature of PS/IFR containing Ce‐TNTs in air is much higher than that of other PS composite without Ce‐TNTs. The LOI value of PS/IFR that contained 0.1 wt% of Ce‐TNTs was increased from 27.0 to 28.5, and the UL‐94 rating was also enhanced to V‐0 from no rating when the total loading of additive was the same. The real‐time FTIR showed that the degradation process was changed after the addition of TNTs. All results indicated that Ce‐TNTs had a significant synergistic effect on the flame retardancy of PS/IFR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
MPP/PER/APP系统阻燃的PA6/OMMT纳米复合材料的燃烧特性   总被引:3,自引:0,他引:3  
以聚磷酸蜜胺(MPP)/季戊四醇(PER)/聚磷酸铵(APP)三元膨胀型阻燃剂(IFR)(其中P/PER/三聚氰胺(MA)的摩尔比为4.1/1.0/1.1)对聚酰胺6(PA6)/有机蒙脱土(OMMT)纳米复合材料(wOMMT=0.03)进行阻燃,测定了阻燃PA6/OMMT的极限氧指数(LOI)及垂直燃烧阻燃性(UL94),以锥形量热仪(CONE)测定了材料诸多与火灾安全性有关的阻燃参数,包括释热速率、有效燃烧热、总释热量、质量损失速率、比消光面积及引燃时间等,并与PA6、阻燃PA6及PA6/OMMT进行了比较,用扫描电镜(SEM)观察了由CONE测试所得残炭的形态。  相似文献   

20.
A type of trialkoxysilane‐containing naphtholoxazine compound (Naph‐boz) was successfully synthesized and combined with ammonium polyphosphate/melamine (APP/ME) as an intumescent flame retardant (IFR) to improve the flame‐retardant efficiency of polyoxymethylene (POM). The Underwriters Laboratories 94 (UL94) vertical burning test, limiting oxygen index (LOI), cone calorimeter, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Raman spectral analysis were used to study the flame‐retardant properties and related mechanism. The results showed that the formulation with 20 wt.% of APP, 6 wt.% of ME, and 4 wt.% of Naph‐boz passed UL94 V‐1 rating, and the LOI value was improved to 40.3%. Compared with pure POM, the IFR with Naph‐boz had greater reduction in peak heat release rate (lower 74.9%) and total heat release (lower 40.2%). SEM images showed that compact and reinforcing charred layer was formed during the POM/IFR/4Naph‐boz samples combustion, which was beneficial at reducing and maintaining low combustion parameters throughout the cone calorimeter test. The synergistic flame‐retardant effect between Naph‐boz and APP/ME was considered as the reason for the improvement in flame retardancy POM. Furthermore, because of the Naph‐boz was conducive to the compatibility between the flame retardants and matrix, the notched Izod impact strength of POM/IFR/4Naph‐boz composite was higher than that of POM/IFR system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号