首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dispersion of multiwalled carbon nanotubes (CNTs) in an ethylene propylene rubber matrix was investigated using an internal mixer. Poly(ethylene‐co‐polyvinyl acetate) (EVA) statistic copolymer was used as a dispersing agent. The effects of the concentration of the dispersing agent and the matrix viscosity on the quality of the dispersion of 1 wt % of CNTs were studied by using microscopy and rheology in the melt state. It was demonstrated that the dispersion is governed principally by the viscosity of the matrix. As expected, better dispersion was observed when the matrix exhibited a lower viscosity. The influence of the filler content on the rheological and electrical properties is presented. A Cross model with a yield stress is proposed to describe the rheological behavior of these materials, which exhibit a viscoelastic solid behavior from 1 wt % CNT content. Electrical measurement data indicate that the electrical percolation threshold was 2.9 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1597–1604, 2011  相似文献   

2.
The electrical properties and dispersion of vapor‐grown carbon nanofibers (VGCNF) and multiwalled carbon nanotubes (MWCNT)—epoxy resin composites are studied and compared. A blender was used to disperse the nanofillers within the matrix, producing samples with concentrations of 0.1, 0.5, and 1.0 wt % for both nanofillers, besides the neat sample. The dispersion of the nanofillers was qualitatively analyzed using scanning electron microscopy, transmission optical microscopy, and grayscale analysis. The electrical conductivity and the dielectric constant were evaluated. The percolation threshold of MWCNT epoxy composites is lower than 0.1 wt % while for VGCNF lies between 0.1 and 0.5 wt %. The difference on the dispersion ability of the two nanofillers is due to their intrinsic characteristics. Celzard's theory is suitable to calculate the percolation threshold bounds for the VGCNF composites but not for the MWCNT composites, indicating that intrinsic characteristics of the nanofillers beyond the aspect ratio are determinant for the MWCNT composites electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
Multiwalled carbon nanotubes (purified, p‐MWNT and ~ NH2 functionalized, f‐MWNT) were melt‐mixed with 50/50 cocontinuous blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene in a conical twin‐screw microcompounder to obtain conductive polymer blends utilizing the conceptual approach of double‐percolation. The state of dispersion of the tubes was assessed using AC electrical conductivity measurements and melt‐rheology. The rheological and the electrical percolation threshold was observed to be ~ 1–2 wt % and ~ 3–4 wt %, respectively, for blends with p‐MWNT. In case of blends with f‐MWNT, the rheological percolation threshold was observed to be higher (2–3 wt %) than p‐MWNT but the electrical percolation threshold remained almost same. However, the absolute values were significantly lower than blends with p‐MWNT. In addition, significant refinement in the cocontinuous morphology of the blends with increasing concentration of MWNT was observed in both the cases. Further, an attempt was made to understand the underlying concepts in relation to cocontinuous morphologies that how the geometrical percolation threshold which adversely suffered because of the attrition of tubes under prolonged shear contributed further in retaining the rheological percolation threshold. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1619–1631, 2008  相似文献   

4.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

5.
Nanocomposites based on poly(ethylene terephthalate) (PET) and expanded graphite (EG) have been prepared by in situ polymerization. Morphology of the nanocomposites has been examined by electronic microscopy. The relationship between the preparation method, morphology, and electrical conductivity was studied. Electronic microscopy images reveal that the nanocomposites exhibit well dispersed graphene platelets. The incorporation of EG to the PET results in a sharp insulator‐to‐conductor transition with a percolation threshold (?c) as low as 0.05 wt %. An electrical conductivity of 10?3 S/cm was achieved for 0.4 wt % of EG. The low percolation threshold and relatively high electrical conductivity are attributed to the high aspect ratio, large surface area, and uniform dispersion of the EG sheets in PET matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
Polypropylene (PP) and acrylonitrile‐butadiene‐styrene (ABS) blends with multiwall carbon nanotubes (MWNT) were prepared by melt mixing. PP/ABS blends without MWNT revealed coarse co continuous structures on varying the ABS content from 40 to 70 wt %. Bulk electrical conductivity of the blends showed lower percolation threshold (0.4–0.5 wt %) in the 45/55 co continuous blends whereas the percolation threshold was between 2 and 3 wt % in matrix‐particle dispersed morphology of 80/20 blends. Interestingly, droplet size was observed to decrease with addition of MWNT above percolation threshold in 80/20 blends. Further, the bulk electrical conductivity was found to be dependent on the melt flow index of PP. The non‐polar or weakly polar nature of blends constituents resulted in the temperature independent dielectric constant, dielectric loss, and DC electrical conductivity. Rheological analysis revealed the formation of 3D network‐like structure in 80/20 PP/ABS blends at 3 wt % MWNT. An attempt was made to understand the relationship between rheology, morphology, and electrical conductivity of these blends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2286–2295, 2008  相似文献   

7.
Several series of nanocomposites were prepared using a latex-based process, the main step of which consisted of mixing an aqueous suspension of exfoliated carbon nanotubes (CNTs) and a polymer latex. In the present work, a systematic study on the electrical properties of fully amorphous (polystyrene - PS) as well as semi-crystalline (isotactic polypropylene - iPP) nanocomposites containing either single-wall (SWCNTs) or multi-wall carbon nanotubes (MWCNTs) has been conducted. Percolation thresholds as low as 0.05 wt.% or 0.1 wt.% were observed for SWCNT/iPP and MWCNT/iPP nanocomposites, respectively. The formation of a conductive percolating network at such a low CNT concentration is favored by the high intrinsic conductivity and the low viscosity of the polymer matrix. The electrical percolation threshold of the iPP-based system was found to be lower than its rheological percolation threshold. Beyond the percolation threshold, MWCNT-based nanocomposites generally exhibited higher conductivity levels than those based on SWCNTs, most probably due to the higher intrinsic conductivity of the MWCNTs as compared to that of the SWCNTs. These excellent electrical properties, associated with the strong nucleating effect of the CNTs reported earlier [1] and [2], render this type of nanocomposites extremely attractive from a technological point of view.  相似文献   

8.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   

9.
In current study, a real‐time rheological method was used to investigate the intercalation and exfoliation process of clay in high‐density polyethylene/organoclay (HDPE/OMMT) nanocomposites using maleic anhydride grafted polyethylene (PEgMA) as compatibilizer. To do this, a steady shear was applied to the original nonintercalated or slightly intercalated composites prepared via simple mixing. The moduli of the composites were recorded as a function of time. The effect of matrix molecular weight and the content of compatibilizer on the modulus were studied. The role of the compatibilizer is to enhance the interaction between OMMT and polymer matrix, which facilitates the dispersion, intercalation, and exfoliation of OMMT. The matrix molecular weight determines the melt viscosity and affects the shear stress applied to OMMT platelets. Based on the experimental results, different exfoliation processes of OMMT in composites with different matrix molecular weight were demonstrated. The slippage of OMMT layers is suggested in low‐molecular weight matrix, whereas a gradual intercalation process under shear is suggested in high‐molecular weight matrix. Current study demonstrates that real‐time rheological measurement is an effective way to investigate the dispersion, intercalation, and exfoliation of OMMT as well as the structural change of the matrix. Moreover, it also provides a deep understanding for the role of polymer matrix and compatibilizer in the clay intercalation process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 302–312, 2010  相似文献   

10.
多壁碳纳米管/聚乙烯复合材料的制备及其导电行为   总被引:2,自引:0,他引:2  
李文春  沈烈  孙晋  郑强 《应用化学》2006,23(1):64-0
多壁碳纳米管/聚乙烯复合材料的制备及其导电行为;碳纳米管;高密度聚乙烯;渗流阈值;导电行为;V-PTC特性  相似文献   

11.
Linear low‐density polyethylene (LLDPE) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1680–1691  相似文献   

12.
The structure and mechanical properties of injection‐molded bars of high‐density polyethylene (HDPE)/PA6 blends were studied in this article. The experimental results showed that the morphologies of injection‐molded bars change gradually along the flow direction, which is tightly related to the melt viscosity and processing conditions. The higher melt viscosity, lower mold temperature, and shorter packing time, restricting the macromolecular relaxation, enhance the difference in morphologies and properties at near and far parts of a mold. An injection‐molded bar (namely H2C5), consisting of 75 wt % of HDPE, 20 wt % of PA6, and 5 wt % of compatibilizer (HDPE‐g‐MAH), showed a greater difference in mechanical properties at near and far parts because of its higher melt viscosity. A clear interface between the skin and core layers of near part in it leads to a much higher impact strength than that of far part. And tensile tests show that its tensile strength of near part is higher than that of far part due to the higher orientation degrees of HDPE matrix and PA6 dispersed phase in near part. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 184–195, 2007  相似文献   

13.
Blends of various grades of polypropylene (PP) with a thermotropic liquid crystalline polymer (TLCP), namely a copolymer of p‐benzoic acid and ethylene terephthalate (60/40 mole ratio) were prepared as extruded films. A thermoplastic elastomer styrene (ethylene‐butylene) styrene (SEBS) was used as a compatibilizer. Melt viscosities of all specimens were measured using a plate‐and‐plate rheometer with oscillating mode in the shear rate region of 1 ‐ 200 rad/s. Addition of SEBS compatibilizer resulted in an increase of the blend viscosity. Observation of the blend morphology revealed an improvement of TLCP dispersion. The TLCP fiber aspect ratio (length to diameter) in the extruded film also increased after addition of SEBS. As a result, the film modulus in extrusion direction was enhanced. The tensile strength of the film specimen was also increased due to an improvement of interfacial adhesion.  相似文献   

14.
Two grades of low density polyethylene (LDPE) were blended with polyamide-6 (PA) in the 75/25 and 25/75 wt/wt ratios and shaped into ribbons with a Brabender single screw extruder. An ethylene-acrylic acid copolymer (EAA) was used in the 2 phr concentration as a compatibilizer precursor (CP). The morphology of the ribbons and its evolution during high temperature annealing were investigated by scanning electron microscopy (SEM). The results confirmed that EAA does actually behave as a reactive compatibilizer for the LDPE/PA blends. In fact, in the presence of EAA, the interfacial adhesion is improved, the dispersion of the minor phase particles is enhanced and their tendency toward fibrillation is increased, especially for the blends with the higher molar mass LDPE grade. The mechanical properties of the latter blends were found to be considerably enhanced by the addition of EAA, whereas the improvement was relatively modest for the blends with the lower molar mass LDPE. The fracture properties of double end notched samples of the ribbons prepared with the blends containing the lower molar mass LDPE grade were also studied. It was shown that, despite of the increased interfacial adhesion caused by the presence of EAA, the latter plays a measurable positive effect on the fracture properties only for the blends with LDPE as the matrix.  相似文献   

15.
The DC conductivity of polymer blends composed of poly(ethylene‐co‐vinyl acetate) (EVA) and high density polyethylene (HDPE), where a conductive carbon black (CB) had been preferentially blended into the HDPE, were investigated to establish the percolation characteristics. The blends exhibited reduced percolation thresholds and enhanced conductivities above that of the individually carbon filled HDPE and EVA. The percolation threshold of the EVA/HDPE/CB composites was between 3.6 and 4.2 wt % carbon black, where the volume resistivity changed by 8 orders of magnitude. This threshold is at a significantly lower carbon content than the individually filled HDPE or EVA. At a carbon black loading of 4.8 wt %, the EVA/HDPE/CB composite exhibits a volume resistivity which is approximately 14 and 11 orders of magnitude lower than the HDPE/CB and EVA/CB systems, respectively, at the same level of incorporated carbon black. The dielectric response of the ternary composites, at a temperature of 23°C and frequency of 1 kHz, exhibited an abrupt increase of ca. 252% at a carbon concentration of 4.8 wt %, suggesting that the percolation threshold is somewhat higher than the range predicted from DC conductivity measurements. Percolating composites with increasing levels of carbon black exhibit significantly greater relative permittivity and dielectric loss factors, with the composite containing 6 wt % of carbon black having a value of ϵ′ ≈ 79 and ϵ″ ≈ 14. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1899–1910, 1999  相似文献   

16.
We report on the effect of processing conditions on rheology, thermal and electrical properties of nanocomposites containing 0.02–0.3 wt % multiwall carbon nanotubes in an epoxy resin. The influence of the sonication, the surface functionalization during mixing, as well as the application of external magnetic field (EMF) throughout the curing process was examined. Rheological tests combined with optical microscopy visualization are proved as a very useful methodology to determine the optimal processing conditions for the preparation of the nanocomposites. The Raman spectra provide evidence for more pronounced effect on the functionalized with hardener compositions, particularly by curing upon application of EMF. Different chain morphology of CNTs is created depending of the preparation conditions, which induced different effects on the thermal and electrical properties of the nanocomposites. The thermal degradation peak is significantly shifted towards higher temperatures by increasing the nanotube content, this confirming that even the small amount of carbon nanotubes produces a strong barrier effect for the volatile products during the degradation. The ac conductivity measurements revealed lower values of the percolation threshold (pc) in the range of 0.03–0.05 wt %. CNTs for the nanocomposites produced by preliminary dispersing of nanotubes in the epoxy resin, compared to those prepared by preliminary functionalization of the nanotubes in the amine hardener. This is attributed to the higher viscosity and stronger interfacial interactions of the amine hardener/CNT dispersion which restricts the reorganization of the nanotubes. The application of the EMF does not influence the pc value but the dc conductivity values (σdc) of the nanocomposites increased at about one order of magnitude due to the development of the aforementioned chain structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
The focus of the paper is to investigate several issues related to the state of dispersion of multiwalled carbon nanotubes (MWNTs) in a polycarbonate (PC) matrix. A masterbatch of PC-MWNT (15 wt.%) was diluted with different amounts of PC in a small scale conical twin screw extruder (DACA Micro Compounder) to obtain different compositions of MWNT. In this system, electrical measurements indicated percolation of MWNT between 1.0 and 1.5 wt.%. We report TEM and AFM investigations of the state of dispersion of MWNT, in the entire volume of the matrix, in selected composites with compositions below (1 wt.% MWNT) and above the percolation threshold (2 and 5 wt.% MWNT). In addition, it was investigated if surface segregation of MWNT and flow induced orientation of nanotubes within the extruded strands had been occurred. It is found that the nanotubes dispersed uniformly through the matrix showing no significant agglomeration in the compositions studied. TEM micrographs seem to be able to detect the percolated structure of the carbon nanotubes. Furthermore, by comparing AFM micrographs from the core region and near to surface region no evidence of segregation or depletion of MWNT at the surface of the extruded strand was found. Comparison of TEM and AFM micrographs on surfaces cut along and perpendicular to the strand direction led to the conclusion that no preferred alignment had occurred as a result of extrusion. Aside from TEM technique, AFM is shown to be suitable to characterize the state of nanotube dispersion along with the issue of surface segregation and orientation of the nanotubes.  相似文献   

18.
A homopolymer iPP and a series of propylene‐ethylene random copolymers with a content of ethylene from 7 to 21 mol % were used as matrices to prepare single‐walled carbon nanotube (SWCNT) nanocomposites in a range of SWCNT concentration from 0.15 to 1 wt %. The solution blending and melt‐ compression molding procedures were kept identical for all nanocomposites. The poly(propylenes) have crystallinities ranging from 70 to 10%, and serve to test the role of SWCNTs acting as nucleants to preserve in the nanocomposites the uniform dispersion of SWCNTs after sonication. The major role of polymer crystallinity is to mediate toward a more open and more connected SWCNT network structure. Fast nucleation and growth of high crystalline matrices on multiple sites along the surface of the nanotubes prevents SWCNT clustering, and entraps the SWCNT network between the semicrystalline structure reducing the driving force of nanotubes to curl and twist. Depletion of crystallites in the less crystalline matrices (<35% crystallinity) leads to curled and poorly connected nanotubes. A consequence of the gradual loss of SWCNT connectivity is a decreased electrical conductivity; however, the change with crystallinity is not linear. Conductivity decreases sharply with decreasing crystallinity for SWCNT contents near the percolation region, while for contents approaching the plateau region the electrical conductivity is less sensitive to matrix crystallinity. The percolation threshold decreases rapidly for polymers with <~30% crystallinity and slowly levels off at crystallinities >~40%. At SWCNT concentrations of 0.15 wt %, SEM images of nanocomposites with the highest crystallinity matrix indicate debundled and interconnected nanotubes, whereas more disconnected and curled SWCNTs remain in the lowest crystallinity nanocomposites. Electrical conductivity in the former is relatively high, whereas the latter are insulators. Also discussed is the nucleating effect of nanotubes and restrictions of the filler to polymer chain diffusion in the crystallization of the polymers. SEM images and Raman spectra in the radial breathing modes region (100–400 cm?1) are complementary tools to extract the quality and details of the SWCNT dispersion in the nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2084–2096, 2010  相似文献   

19.
Uniform dispersion and strong interfacial interaction are two critical prerequisites for application of single‐walled carbon nanotubes (SWNTs) in polymer composites. To endow the composites with multifunctional feature, no damage on the chemical/electronic structure of SWNTs is also usually required. With these ends in view, two epoxide‐containing pyrene derivatives (EpPys) were designed, synthesized, and used as reactive noncovalent dispersants for developing multifunctional epoxy/SWNT composites. One having longer chain length between epoxide group and pyrene moiety, that is, EpPy‐16, shows higher dispersing efficiency and provides the nanotube dispersion with better stability, thus picking up for subsequent studies. Systematic characterization on SWNT/EpPy‐16 hybrid demonstrates that 13.2 wt % of EpPy‐16 is adsorbed on the SWNT surface through strong π‐stacking interaction, and intrinsic electronic structure of SWNTs is basically reserved. The solution‐based process adopted here preserves the good SWNT dispersing state in dispersion into the composites. Simultaneously, enhanced interfacial interaction is also realized by using EpPy‐16, which interacts noncovalently with SWNT but connects covalently to epoxy network. As a result, the composites acquire 37 and 22% increments in tensile strength and Young's modulus, respectively, relative to that of neat resin. A low‐electrical percolation threshold of 0.1 wt % SWNTs and improved thermal properties were also observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
In this work, three ionic liquids (ILs) differing by the length of the alkyl chain linked to their cation were incorporated in a Pebax® copolymer matrix through a solvent cast process for composition from 0 to 70 wt % IL. The copolymer/IL miscibility was investigated via IR Spectroscopy, Differential Scanning Calorimetry and Scanning Electron Microscopy. The three ILs dissolved in the copolymer soft phase for ILs content below 30 wt % whereas they formed segregated dispersed domains at higher loadings. The plasticizing effect of the ILs was examined through DSC and thermomechanical analyses. In the range of IL amount from 0 to 30 wt %, no significant differences were observed in the thermomechanical properties as a function of the IL structure. At higher IL content, the films based on 1‐ethyl‐methylimidazolium tetrafluoroborate sustained better properties. All films exhibited a good thermal stability up to 300 °C. The water sorption isotherms were modeled with GAB equation and both the kinetic and thermodynamic parameters of the sorption mechanism were investigated. A non‐monotonic evolution of the GAB parameters and diffusion coefficient as a function of the IL content was evidenced. Moreover, different behaviors were observed as a function of the IL nature and structuration within the copolymer matrix. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 811–824  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号