首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
壳聚糖基智能凝胶材料及其应用   总被引:12,自引:0,他引:12  
李方  赵峰  尹玉姬  姚康德 《化学通报》2001,64(3):129-134
壳聚糖是一种通过超分子作用形成凝胶的氨基多糖,可形成配合物,如聚电解质配合物,共价配合物和自组装配合物等。壳聚糖基智能凝胶在控制释放载体、分离膜、固定化基质、人工细胞外基质和场响应材料等方面应用前景广阔。  相似文献   

2.
Polymeric matrices of poly(2-hydroxyethyl methacrylate) (PHEMA) crosslinked with different percentages of ethylene glycol dimethacrylate (EGDMA) as well as different loads of nickel salt were synthesized. Nickel release from the polymeric systems, and their thermal stability were analyzed. A high percentage of the nickel loaded was released, although strong interactions between the polymeric matrices and the nickel ion must be established since a total nickel release did not take place. The values of the diffusion coefficients showed that nickel release depended on the amount of nickel salt loaded in the polymeric matrix and also on the crosslinking degree of the gels. On the other hand, the presence of nickel salt induced an evident thermal instability in the polymeric matrices, although all the polymeric systems can be considered thermally stable.  相似文献   

3.
Internal and external means for controlling the release rates of large molecules, such as proteins, from ethylene—vinyl acetate copolymer matrices are presented. Internal approaches include alteration of the polymer—drug design, such as changing drug loading and particle size, coating the matrix, or altering matrix geometry. Kinetic and microstructural analyses are discussed. Applications of these polymeric systems, for instance, in delivery of insulin for diabetes, improved immunization procedures, and in developing bioassays for informational macromolecules are considered. In addition, a new approach for externally controlling release rates of drugs using magnetism has been developed. Until now, drug delivery systems were capable of delivering drugs at either constant or decreasing rates. We sought a system that permitted delivery of increased doses on demand, and achieved this by incorporating magnetic particles and drugs into polymeric matrices. Drug release rates can then be increased by an appropriate application of an external magnetic field. Over a five-day period, the magnetic field was applied ten times and drug release rates increased by up to 100% each time. Initial results indicate that this system does not cause tissue damage.  相似文献   

4.
Self-diffusion measurement of solutes in polymer gels has been investigated using pulsed gradient spin echo NMR spectroscopy. However, few data are available on the self-diffusion of small solutes in natural polysaccharide polymers used as thickeners in the food industry. Since aroma diffusion in food matrices could have an impact on flavor release, this is an interesting and economic challenge. Diffusion ordered spectroscopy (DOSY) resolves diffusion data for each component in complex mixtures. We used DOSY with the inverse Laplace transform approach with the maximum entropy algorithm to investigate diffusion of two aroma compounds, ethyl butanoate and linalool, in an iota-carrageenan matrix as the food model. We showed that the self-diffusion coefficient values of small molecules in a polysaccharide matrix could be easily extracted using this method. We then investigated the impact of the gelling state of iota-carrageenan matrices on the self-diffusion of ethyl butanoate.  相似文献   

5.
Self‐assembled, noncovalent polymeric biodegradable materials mimicking proteoglycan aggregates were synthesized from inclusion complexes of cationic surfactants with γ‐cyclodextrin and the natural anionic polymer hyaluronan. The amorphous structure of this ternary system was proven by X‐ray diffraction and thermal analysis. Light‐scattering measurements showed that there was a competition between hyaluronic acid and the surfactant for the cyclodextrin cavity. These self‐assembled supramolecular matrices were loaded with both hydrophilic and lipophilic drug substances for dissolution studies. The release of the entrapped drugs was found to be controlled by cations in the surrounding media and by biodegradation. Slow drug release in an ion‐free medium became faster in physiological salt solution in which the macroscopic polymer matrix was disassembled. In contrast, the enzymatic degradation of hyaluronan was hindered in the polymeric matrix. The supramolecular systems consisting of γ‐cyclodextrin as a macrocyclic host, a cationic surfactant guest, and hyaluronic acid as the anionic polymer electrostatically cross‐linked by the inclusion complex of the first two was found to be a novel drug‐delivery system for the controlled release of traditional drugs such as curcumin and ketotifen and proteins such as bovine serum albumin.  相似文献   

6.
Solid-phase microextraction (SPME) is a technique for extraction of organic compounds from gaseous, aqueous, and solid matrices. SPME is rapid and simple, ideal for automation and for in situ measurements, and no harmful solvents are needed. The principle of SPME involves equilibration of the analytes between the sample matrix and an organic polymeric phase coated on a fused-silica fiber. SPME is traditionally combined with analysis by gas chromatography (GC) and this combination has proved sensitive, accurate, and precise for quantitative analysis of different classes of volatile compound. More recently SPME has been coupled with liquid chromatography to widen its range of application to non-volatile and thermally unstable compounds also. This article reviews the status of SPME coupled with liquid chromatography. It focuses on different applications of the technique, e.g. environmental samples, biological fluids, and food samples, to show that SPME-HPLC has great potential in the analysis of a wide range of compounds in different matrices.  相似文献   

7.
This study was aimed to design core–sheath‐structured polymeric fibers for protein delivery through emulsion electrospinning to enhance the encapsulation efficiency (EE), structural integrity, and activity retention, and to achieve controllable protein release. Integral core–sheath structure was achieved for electrospun fibers with lysozyme loading efficiency of 93.3% and the specific activity retention (SAR) of 64.6%, while the surface protein content (SP) was as low as 4.2%. The emulsion components were optimized to minimize the burst release and extend the release period, and the release profiles were found to be closely related with the fiber characteristics such as the SPs. An initial burst release as low as 6.2% followed by gradual release for 33 days was indicated from poly(ethylene glycol)‐poly(DL ‐lactide) (PELA) fibers. The gradual protein release was determined by a competition of fiber collapse leading to accelerated release and fiber fusion leading to decelerated release. Dependent on the matrix polymer and protein encapsulated, the degradation behaviors of the fiber matrices were correlated with the release rate and the effective lifetime of the drug release. The core–sheath‐structured ultrafine fibers could protect the structural integrity and bioactivity of encapsulated lysozyme, and an increase in the protective effect was demonstrated for fibers prepared from PELA matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A new approach for design of improved interfacial bonding between carbon fibers and polymeric matrices is described. In this method the affinity of surface-treated carbon fibers to various polymer matrices is simulated by analyzing the adsorption characteristics of model compounds, typical of the polymer units, onto very high surface area carbon fibers. The affinity can be evaluated by the use of Thermogravimetric Analysis (TGA) to measure adsorption–desorption characteristics. Since high surface area, activated carbon fibers (ACF) can be chemically treated to obtain acidic, basic, nonpolar or highly polar surfaces, it should be possible to assess the interactions of chemically modified surfaces with model compounds such as methanol (MeOH), acetone, dimethylformamide (DMF), dimethylether, tetrahydrofuran (THF) and water. Some preliminary results are presented, indicating that surface treatments for carbon fibers other than oxidation may lead to enhanced bonding with polymeric matrices.  相似文献   

9.
Controlled release technology addresses problems associated with excessive use of toxic agricultural chemicals. This paper reviews the studies on the use of carbohydrate polymers as controlled release matrices for pesticides. Alginates, starch and its derivatives, chitosan, carboxymethylcellulose and ethylcellulose are some of the natural polymers discussed in this review. The advantages and disadvantages of these polymeric systems as well as the factors that affect pesticide release are presented. A discussion on the polymers’ encapsulation efficiency and release profile is also included, which will aid future researchers in identifying the suitable formulation for controlled release of pesticides. Combination of two polymers, incorporation of sorbents into polymer matrices, and modification of polymer systems are some of the strategies also discussed herein. Recent trends in this area of research include nanoformulation, nanoencapsulation, and the development of polymeric systems with dual properties such as controlled release with photo-protective property and the attract-and-kill strategy. Cytotoxicity studies are being conducted to address safety issues of pesticide handlers as well as to determine the toxicity of the formulation to non-target organisms such as the plant itself.  相似文献   

10.
The herbicides applied in soils can be easily lost, owing to leaching, volatilization, and bio-and photodegradation. Controlled-release systemsusing polymeric matrices claim to solve these problems. The movement of the herbicides in the soilisalso an important phenomenon to be studied in order to evaluate the loss processes. The development of mathematical models is a relevantrequirement for simulation and optimization of such systems. This study reviews mathematical models as an initial step for modeling data obtained for controlled-release systems of herbicides (diuron, 2,4-dichlorophenoxyacetic acid, and ametryn) using sugarcane bagasse lignin as a polymeric matrix. The release kinetic studies were carried out using several acceptorsystems includinga water bath, soil, and soil-packed columns. Generally, these models take into account phenomena such as unsteady-state mass transfer by diffusion (Fick'slaw) and convection, consumption by several processes, and partitioning processes, resulting in partial differential equations with respect to time and space variables.  相似文献   

11.
A drug diffusion model for the case of diffusion of an initially uniformly distributed drug through a polymeric matrix is presented and solved. Drug diffusion from a single surface is analyzed for the case of countercurrent diffusion of a solvent which is thermodynamically compatible with the polymer. Due to swelling, considerable volume expansion is observed leading to a moving-boundary diffusion problem. Drug concentration profiles within the polymer and drug release rates can be determined. The results are in agreement with experimental data obtained for the system of KCl distributed in hydrophilic hydroxypropyl methyl cellulose matrices, in the form of tablets.  相似文献   

12.
Encapsulation of flavor and aroma compounds has been largely explored in order to meet appraisal demands from consumers by improving the impact of flavor during the consumption of food products. Even though several techniques have been used for encapsulating volatile compounds, i.e., spray drying, fluidized bed coating, coacervation, and melt extrusion, those most frequently used in the food industry are spray drying and melt extrusion. In this article, the different techniques of encapsulation of flavors and fragrances in polymer-based matrices by extrusion are reviewed and partly re-defined, emphasizing the differences between the various techniques reported so far and the role of matrix types, additives, and operative conditions. Also, the role of water as a key parameter for controlled release and shelf stability of the delivery system will be discussed.  相似文献   

13.
The present work deals with the development of a new slow release polymeric material, based on maize starch/cellulose acetate blend polymerized with acrylic acid monomer by free-radical mechanism. The polymerization was initiated by a redox system. The synthesized polymeric material may be used as a carrier for some active compounds such as anticancer drugs and has been characterized by Fourier transform spectroscopy. The active compounds are a new series of heterocyclic derivatives that had an anticancer effect and were prepared from pyrimidine and coumarin compounds, namely: 7-(2-methoxyphenyl)-5-thioxo-5,6-dihydro[1,2,4]triazolo[4,3-c] pyrimidine-8-carbonitrile (compound I), 8-(2-methoxyphenyl)-3,4-dioxo-6-thioxo-3,4,6,7-tetrahydro-2h-pyrimido[6,1-c]-[1,2,4]triazine-9-carbonitrile (compound II), and 4-substituted-1-(1-(7-methoxy-4-methyl-coumarin-8-yl) ethylidene) thiosemi-carbazide (compound III). They were incorporated into the prepared polymer matrix. The polymer-carried drug was tested for slow release drug delivery through testing it in aqueous media for different time periods and examining it as an anti-proliferative agent against human liver cancer cell line (HEPG2). The release rate of the drug was evaluated in aqueous media at different pHs as well as in dimethyl formamide which is the good solvent of such drugs. The release was measured spectrophotometrically. It was found that the release rate depends on the pH of the aqueous media. The release of the drug in the alkaline media was found to be high compared with other media. Also, the sustained release of the drug was extended to about 20 days. The activity of the released drug against human liver cancer cell line was tested. The results showed that compound (III) gave the highest growth inhibition activity followed by compound (II), while compound (I) indicated the lowest activity against the human liver (HEPG2) cancer cell line.  相似文献   

14.
A theoretical model, which takes proper account of the simultaneous uptake of a liquid leachant by a polymer matrix and the consequent release of a bioactive or other solute incorporated therein, is presented and the kinetics of release predicted under various conditions is investigated. This model is shown to be both more rigorous and much more widely applicable than previous attempts to approach the above problem. Furthermore, it can be easily modified or extended, in accordance with the information available about any particular system. It is, therefore, expected that the model introduced here will prove useful as a basis for the design of monolithic controlled-release devices of this type or for the evaluation of the leachability of low-level and medium-level radioactive wastes “immobilized” in polymeric matrices.  相似文献   

15.
Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.  相似文献   

16.
17.
杨吉双  张庆合  苏立强 《色谱》2020,38(12):1369-1380
有机磷酸酯(OPEs)是阻燃剂和塑化剂的主要原料,通常以添加形式存在于各种材料中,在生产和使用过程中伴随磨损和挥发易释放到环境中,现已成为新兴污染物。因为该类化合物的神经毒性、致癌性、破坏内分泌系统以及生殖系统等毒性,食品样品中OPEs的检测成为近年来关注的热点。该文重点围绕食品基质中OPEs检测存在的含量低、本底干扰严重、缺乏灵敏可靠分析方法等问题,对OPEs类化合物的性质、样品前处理、检测技术、质量控制等进行了全面评述。首先总结了30余种常见OPEs类化合物的类型、官能团、极性、沸点等理化性质,对可能的前处理和检测技术进行了理论分析;其次梳理了加速溶剂萃取(ASE)、基质固相分散萃取(MSPD)、微波辅助萃取(MAE)、超声辅助萃取(UAE)、QuEChERS、固相萃取(SPE)、凝胶渗透色谱(GPC)、分散固相萃取(d-SPE)等前处理方法在食品中OPEs化合物分析中的特点,其中UAE和QuEChERS结合多步净化能够有效降低高脂类食品的基质效应,具有良好应用前景;此外比较了气相色谱和液相色谱在分离和检测方面的优缺点,比较已有文献的检出限、回收率等数据;概括了标准品和内标物来源、过程污染与基质效应的产生原因和预防措施;最后对高分辨质谱筛查和鉴别OPEs未知代谢物,以及相关分析方法趋势进行了展望。  相似文献   

18.
A refined integral method has been successfully applied to moving boundary problems encountered in the diffusional release of a solute from a polymeric matrix. The release kinetics has been analyzed for both erodible and non-erodible matrices with perfect sink and constant, finite external volume conditions. The range of applicability of these approximate analytical solutions has been established by comparison with available exact solutions. p]The approximate analytical solutions presented here are much more accurate than the pseudosteady-state results and much easier to use routinely than the exact solutions. For a dispersed solute, the results presented here are particularly useful for cases where the solute loading is not in great excess of the solute solubility in the matrix.  相似文献   

19.
Galli V  García A  Saavedra L  Barbas C 《Electrophoresis》2003,24(12-13):1951-1981
This review article is a comprehensive survey of capillary electrophoresis methods developed for the measurement of short-chain organic acids and inorganic anions in a wide variety of matrices, such as food and beverages, environmental, industry, and other applications, as well as clinical applications in body fluids such as urine, plasma or cerebrospinal fluid. Details of sample pretreatment and of electrophoretic conditions have been collected in tables, arranged by the type of matrix. Strategies employed for method development for the analysis of these compounds by capillary electrophoresis in real samples are discussed.  相似文献   

20.
A combination of hydrodistillation (HD) and liquid-phase microextraction (LPME) has been successfully developed to improve sensitivity and selectivity in attenuated total reflection (ATR) infrared determination of semivolatile organic compounds from high water content plant and food matrices contributing to solve extraction efficiency drawbacks. The HD sampling facilitates the extraction of the semivolatile analytes from the sample matrix compared to headspace sampling, while the liquid-phase microextraction using a water immiscible solvent allows analyte preconcentration prior to ATR analysis. Experimental conditions regarding temperature and time of extraction, water effect and number of consecutive extractions have been deeply studied. The qualitative and quantitative capability of the developed methodology has been evaluated through the identification of the main semivolatile substances in plant and food matrices like spices and citrus peels and the effect of different drying treatments on the volatile composition of rosemary samples was studied through the quantification of camphor and eucalyptol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号