首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Quantum dots (QDs) based on zinc sulfide are synthesized by a microwave method in an aqueous medium using dioctyl sodium sulfosuccinate (DS) or 4,4′-bipyridine (BP). Based on the analysis of X-ray diffraction profiles the conclusion is drawn that QDs obtained have a structure of cubic zinc blende with an average particle size of 5.6 nm for the ZnSDS sample and 4.8 nm for ZnSBP. Transmission electron microscopy images show the presence of spherical aggregates of particles only for ZnSDS. FTIR data indicate the presence of sulfate ions in both samples; DS remains in the sample, facilitating the QD agglomeration, while BP is effectively washed out. From the optical diffuse reflectance spectra the band gap is estimated, which turns out to be larger than the expected one due to the presence of elemental sulfur in the samples and partial oxidation of the QD surface. The QD structure based on ZnS particles is also modeled in the work. The possibility to employ X-ray absorption near-edge spectroscopy for the verification of atomic structural parameters around zinc sites in QDs based on zinc sulfide is demonstrated.  相似文献   

2.
ZnS hollow microspheres were synthesized by a dl ‐aspartic acid mediated hydrothermal route. dl ‐aspartic acid plays an important role as crystal growth soft template, which regulates the release of Zn2+ ions for the formation of ZnS hollow spheres. The formation of these hollow spheres was mainly attributed to an Ostwald ripening process. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), UV/Vis spectroscopy (UV), and photoluminescence (PL). The shells of the microspheres were composed of ZnS quantum dots (QDs) with the average size of 2.31 nm. The average microspheres diameter is 0.5–3.5 μm. The shell thickness of the hollow sphere is ≈?300 nm. The optical bandgap energy increased significantly compared to the bulk ZnS material due to the strong quantum confinement effect. Two strong emissions at ≈?425 nm and ≈?472 nm in the photoluminescence (PL) spectrum of ZnS hollow microspheres indicate strong quantum confinement because of the presence of QDs.  相似文献   

3.
Mandal A  Dandapat A  De G 《The Analyst》2012,137(3):765-772
A green and simple chemical synthesis of magic sized water soluble blue-emitting ZnS quantum dots (QDs) has been accomplished by reacting anhydrous Zn acetate, sodium sulfide and thiolactic acid (TLA) at room temperature in aqueous solution. Refluxing of this mixture in open air yielded ZnS clusters of about 3.5 nm in diameter showing very strong and narrow photoluminescence properties with long stability. Refluxing did not cause any noticeable size increment of the clusters. As a result, the QDs obtained after different refluxing conditions showed similar absorption and photoluminescence (PL) features. Use of TLA as a capping agent effectively yielded such stable and magic sized QDs. The as-synthesized and 0.5 h refluxed ZnS QDs were used as a fluorescence sensor for Ag(+) ions. It has been observed that after addition of Ag(+) ions of concentration 0.5-1 μM the strong fluorescence of ZnS QDs was almost quenched. The quenched fluorescence can be recovered by adding ethylenediamine to form a complex with Ag(+) ions. The other metal ions (K(+), Ca(2+), Au(3+), Cu(2+), Fe(3+), Mn(2+), Mg(2+), Co(2+)) showed little or no effect on the fluorescence of ZnS QDs when tested individually or as a mixture. In the presence of all these ions, Ag(+) responded well and therefore ZnS QDs reported in this work can be used as a Ag(+) ion fluorescence sensor.  相似文献   

4.
The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.  相似文献   

5.
通过S2-中间态将有机配体三辛基氧膦(TOPO)转化为ZnS保护层,显著改善了CdSe量子点(QDs)器件的转换效率.配体交换后的傅里叶变换红外(FTIR)光谱结果表明,有机配体已被S2-离子配体取代;离子反应后的X射线光电子能谱(XPS)结果表明S2-离子配体反应生成了ZnS,紫外-可见(UV-Vis)吸收光谱结果表明量子点溶液吸收峰位没有发生明显改变,透射电子显微镜(TEM)结果表明配体交换后量子点粒径减小.电化学阻抗谱(EIS)结果表明光照条件下有机配体转化为ZnS保护层后TiO2/QDs/电解质界面电阻减少,证明该条件下正向电子传输增强;强度调制光电压谱(IMVS)和强度调制光电流谱(IMPS)结果表明电子寿命和扩散速度增加.相比于有机配体,形成ZnS保护层后的量子点敏化太阳能电池(QDSC)效率由0.98%提高到1.75%,相对提高了1.78倍.  相似文献   

6.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

7.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

8.
The interaction between water-soluble zinc sulfide quantum dots (ZnS QDs) and selenite ion was investigated by photoluminescence method. The water-soluble ZnS QDs were synthesized using a simple and fast procedure based on the co-precipitation of nanoparticles in an aqueous solution in the presence of 3-mercaptopropionic acid (MPA), as the capping agent. Fluorescence intensity for MPA–ZnS QDs, with a strong fluorescent emission at about 430 nm, decreased in the presence of selenite. The influence of the effective parameters including pH and temperature was investigated. The results showed that under the optimum conditions, the fluorescence intensity change of QDs was linearly proportional to the selenite concentration in the range 4.0 × 10?5–7.2 × 10?4 mol L?1. Moreover, the quenching mechanism was discussed to be a static quenching procedure.  相似文献   

9.
We report on a simple strategy for the determination of zinc ion by using surface-modified quantum dots. The probe consists of manganese-doped quantum dots made from zinc sulfide and capped N-acetyl-L-cysteine. The particles exhibit bright yellow-orange emission with a peak at 598?nm which can be attributed to the 4T16A1 transition of Mn(II). This bright fluorescence is effectively quenched by modifying the sulfur anion which suppresses the radiative recombination process. The emission of the probe can then be restored by adding Zn(II) which causes the formation of a ZnS passivation layer around the QDs. The fluorescence enhancement caused is linear in the 1.25 to 30?μM zinc concentration range, and the limit of detection is 0.67?μM.
Figure
A “turn-on” fluorescent probe based on manganese-doped zinc sulfide quantum dot capped with N-acetyl-L-cysteine (NAC) was obtained and using it to determine the concentration of zinc (II) according to the fluorescent enhancement in aqueous solution.  相似文献   

10.
Here, we report a facile and efficient approach for the large-scale synthesis of highly fluorescent sulfur quantum dots (SQDs) from inexpensive elemental sulfur under a pure oxygen (O2) atmosphere. The important finding of this work is that the polysulfide (Sx2−) ions could be oxidized to zero-valent sulfur (S[0]) by O2, which is the accelerator of the reaction. The SQDs prepared by this method possess nearly monodisperse size (1.5–4 nm), high fluorescence quantum yield (21.5%), tunable emission, and stable fluorescence against pH change, ionic strength variation and long-term storage. Moreover, the reaction yield of SQDs reached as high as 5.08% based on the content of S element in SQDs, which is much higher than other reported approaches (generally <1%). The prepared SQDs could be easily processed for widespread applications thanks to their low toxicity and superior dispersibility both in water and common organic solvents. These high-quality SQDs may find applications similar to or beyond those of carbon QDs and silicon QDs.

Highly fluorescent sulfur quantum dots could be rapidly and massively synthesized from inexpensive elemental sulfur under a pure O2 atmosphere.  相似文献   

11.
以硫脲为硫源,采用谷胱甘肽(GSH)和柠檬酸钠(SC)为配体,通过水热法制备了水溶性AgInS2/ZnS(AIS/ZnS)核/壳结构量子点。系统研究了反应温度和配体用量对量子点的合成及其荧光性能的影响。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见吸收光谱(UV-Vis)和光致发光光谱(PL)分别对量子点的物相、形貌和光学性能进行了表征,并考察了量子点的稳定性。实验结果表明,随着反应温度从70℃升高至90℃,促进了ZnS壳层的形成,有效地钝化了量子点的表面缺陷,获得的AIS/ZnS核/壳量子点的发光强度显著提高,发光峰位从600 nm蓝移至580 nm。配体的添加可以有效地平衡Zn^2+的化学反应活性,减缓ZnS壳层的生长,抑制核壳界面缺陷的形成,还能消除量子点的表面态,当nGSH/nZn^2+=2.0,nSC/nZn^2+=2.5时,AIS/ZnS量子点的荧光性能最佳。此外,AIS/ZnS核/壳结构量子点还具有优异的光学稳定性。  相似文献   

12.
Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2S3) and their core/shell heterostructures Ga2S3/ZnS as well as Ga2S3/ZnS/Al2O3. The photoluminescence (PL) properties of core Ga2S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.  相似文献   

13.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

14.
Solid solutions of zinc sulfide with manganese and cobalt are synthesized. Based on the analysis of X-ray diffraction profiles the conclusion is drawn about the formation of a hexagonal wurtzite type structure in the synthesized quantum dot (QD) solutions. The average crystallite sizes are 8 nm and 22 nm for the samples with manganese and cobalt respectively. Results of IR and optical spectroscopy are consistent with the powder X-ray diffraction and X-ray fluorescence data. The question about particle aggregation in isopropanol and DMF solutions is considered. The QD structures based on ZnS particles doped with Mn and Co transition metal atoms are modeled. The possibility to apply X-ray absorption near edge structure (XANES) spectroscopy to verify the atomic structure parameters around the positions of doping transition metal atoms in QDs of the ZnS family is shown. Partial densities of ZnS:Mn and ZnS:Co electronic states are calculated.  相似文献   

15.
Zhang F  Li C  Li X  Wang X  Wan Q  Xian Y  Jin L  Yamamoto K 《Talanta》2006,68(4):1353-1358
A reagentless amperometric uric acid biosensor based on zinc sulfide (ZnS) quantum dots (QDs) was firstly developed. It could detect uric acid without the presence of an electron mediator. The carboxyl group functionalized ZnS QDs were synthesized, and they were soluble biocompatible and conductive. ZnS QDs conjugates could provide increased enzyme binding sites, which may result in higher enzyme loading. Thus, the proposed uricase/ZnS QDs/l-cys biosensor exhibited higher amperometric response compared to the one without QDs (uricase/l-cys biosensor). In addition, there was little AA interference. It showed a linear dependence on the uric acid concentration ranging from 5.0 × 10−6 to 2.0 × 10−3 mol L−1 with a detection limit of 2.0 × 10−6 mol L−1 at 3σ.  相似文献   

16.
Cellulose nanocrystals (CNC) isolated from bleached bagasse pulp were modified with a second-generation isocyanate dendron (G2-dendron) to prepare dendronized cellulose nanocrystals (DCN). Transmission electron microscopy (TEM), elemental analysis for nitrogen, Fourier transform infrared (FTIR) and 13C magic angle spinning nuclear magnetic resonance (13C MAS NMR) proved occurrence of the modification of cellulose nanocrystals surfaces. The dendronized cellulose nanocrystals were used as templates for formation of ZnS and CdS quantum dots with uniform diameter at low temperature in water. The prepared DCN/QDs were highly soluble in water. TEM images showed that the size of the prepared quantum dots was about 5 nm in diameter. UV-Visible and fluorescence spectroscopy showed absorption and emission at wavelength values lower than that reported for bulk ZnS and CdS.  相似文献   

17.
We report a turn-on phosphorescence probe for detection of histidine based on Co2+-adsorbed N-acetyl-l-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co2+ attributing to the adsorption of Co2+ onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co2+-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co2+ with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co2+-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.  相似文献   

18.
The interaction of a presynthesized orange emitting Mn2+‐doped ZnS quantum dots (QDs) with L‐Cysteine (L?Cys) led to enhance emission intensity (at 596 nm) and quantum yield (QY). Importantly, the Mn2+‐doped ZnS QDs exhibited high sensitivity towards L?Cys, with a limit of detection of 0.4±0.02 μM (in the linear range of 3.3–13.3 μM) and high selectivity in presence of interfering amino acids and metal ions. The association constant of L?Cys was determined to be 0.36×105 M?1. The amplified passivation of the surface of Mn2+‐doped ZnS QDs following the incorporation and binding of L?Cys is accounted for the enhancement in their luminescence features. Moreover, the luminescence enhancement‐based detection will bring newer dimension towards sensing application.  相似文献   

19.
Highly fluorescent water-soluble CdSe/ZnS (core/shell) quantum dots (QDs) as a fluorescent Cu2+ ion probe were synthesized using thiacalix[4]arene carboxylic acid (TCC) as a surface coating agent. Hydrophobic trioctylphosphine oxide (TOPO) capped CdSe/ZnS QDs were overcoated with TCC in tetrahydrofuran at room temperature, and deprotonation of the carboxyl groups of TCC resulted in the formation of water-soluble QDs. The surface structure of the QDs was characterized by using transmission electron microscopy (TEM) and fluorescence correlation spectroscopy (FCS). TEM images showed that TCC-coated QDs were monodispersed with the particle size (core-shell moiety) of approximately 5 nm. Hydrodynamic diameter of the TCC-coated QDs was determined to be 8.9 nm by FCS, showing that the thickness of the surface organic layer of the QDs was approximately 2 nm. These results indicate that the surface layer of TCC-coated QDs forms a bilayer structure consisting of TOPO and TCC molecules. TCC-coated CdSe/ZnS QDs were highly fluorescent (quantum yield, 0.21) compared to the QDs surface-modified with mercaptoacetic acid and mercaptoundecanoic acid. Fluorescence of the TCC-coated QDs was effectively quenched by Cu2+ ions even in the presence of other transition metal ions such as Cd2+, Zn2+, Co2+, Fe2+, and Fe3+ ions in the same solution. The Stern-Volmer plot for the fluorescence quenching by Cu2+ ions showed a linear relationship up to 30 microM of Cu2+ ions. The ion selectivity of TCC-coated QDs was determined by measurements of fluorescence responses towards biologically important transition metal ions (50 microM) including Fe2+, Fe3+, Co2+>Zn2+, Cd2+. The fluorescence of TCC-coated QDs was almost insensitive to other biologically important ions such as Na+, K+, Mg2+, and Ca2+, suggesting that TCC-coated QDs can be used as a fluorescent Cu2+ ion probe for biological samples. A possible quenching mechanism by Cu2+ ions was also discussed on the basis of a Langmuir-type adsorption isotherm.  相似文献   

20.
应用反胶束法制备了稀磁半导体Cd1-xMnxS量子点.量子点的大小可通过改变ωo值(wo=[水]/[表面活性剂])来控制.高分辨透射电镜的分析结果表明,量子点呈单分散性,是几乎没有缺陷的单晶体.量子点的大小约为4.8~6nm,随wo值增大而增大.电子能谱(EDS)测定结果表明,Mn2+离子在量子点中的摩尔分数为1.5%.由电子自旋共振(ESR)分析确定一部分Mn2+离子取代Cd2+离子位置而位于晶格,另一部分Mn2+离子位于Cd1-xMnxS的表面或间隙位置.吸收光谱显示,随着量子点变小,吸收带边发生蓝移,显示明显的量子尺寸效应.光致荧光光谱分析表明,发光峰属于Mn2+的4T1-6A1跃迁,而且随着ωo和粒径的增大,发光峰从2.26,2.10,2.05eV红移到1.88eV;其发光峰偏离2.12eV,主要是由于Mn2+离子位于扭曲的四面体晶体场所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号