首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点,量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm),且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂,成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质,而且胶束原有的灵敏的热响应性被保留。这些研究初步表明,无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

2.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点, 量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm), 且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂, 成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质, 而且胶束原有的灵敏的热响应性被保留。这些研究初步表明, 无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

3.
Highly luminescent thioglycolic acid-capped CdTe-based core/shell quantum dots (QDs) were synthesized through encapsulating CdTe QDs in various inorganic shells including CdS, ZnS and CdZnS. CdTe/CdS core/shell QDs exhibited a significant redshift of emission peaks (a maximum emission peak of 652 nm for the core/shell QDs and 575 nm for CdTe cores) with increasing shell thickness. In contrast, the redshift of photoluminescence (PL) peak wavelength of CdTe/ZnS QDs was less than 15 nm. The PL peak wavelengths of the core/shell QDs depended strongly on core size and shell thickness. The PL quantum yields (QYs) of the CdTe/CdS core/shell QDs are up to 67 % while that of CdTe/ZnS core/shell QDs is 45 %. A composite CdZnS shell made CdTe cores a high PL QY up to 51 % and broadly adjusted PL spectra (a maximum PL peak wavelength of 664 nm). The epitaxial growth of the shell was confirmed by X-ray powder diffraction analysis and luminescence decay experiments. Because of high PL QYs, tunable PL spectra, and low toxicity from a ZnS surface layer, CdTe/CdZnS core/shell QDs will be great potential for bioapplications.  相似文献   

4.
Tri(pyrazolyl)phosphanes ( 5 R1,R2) are utilized as an alternative, cheap and low‐toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long‐term stable stock solutions (>6 months) of P(OLA)3 (OLAH=oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA)3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530–620 nm and photoluminescence quantum yields (PL QYs) between 51–62 %. A proof‐of‐concept white light‐emitting diode (LED) applying the InP/ZnS QDs as a color‐conversion layer was built to demonstrate their applicability and processibility.  相似文献   

5.
InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure.  相似文献   

6.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

7.
合成了CdSe/ZnS核壳结构量子点(QDs), 将其作为光敏剂吸附在TiO2纳米晶薄膜上, 组装成量子点敏化太阳能电池(QDSSCs), 从电子注入速率和电池性能两方面对QDSSCs进行了表征. 为了定量研究ZnS层包覆对电子注入的影响, 运用飞秒瞬态光谱技术, 测试了包覆ZnS前后, CdSe-TiO2体系的电子注入速率. 实验测得ZnS包覆前后电子注入速率分别为7.14×1011s-1和2.38×10-11s-1, 可以看出包覆后电子注入速率明显降低, 仅为包覆前的1/3. 电池器件J-V性能测试表明, ZnS作为绝缘层包覆在CdSe的表面有效提高了QDSSCs的填充因子和稳定性, 但同时也导致了效率的降低. 上述结果说明了电子注入速率的降低是导致电池电流和效率下降的重要原因, 为今后优化核壳结构QDSSCs的电流和效率提供了依据.  相似文献   

8.
The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non‐radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd1?xZnxSe1?ySy/ZnS core/graded shell–shell QDs with suppressed re‐absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re‐absorption and a constrained Stokes shift, the as‐synthesized CdSe/Cd1?xZnxSe1?ySy/ZnS QDs exhibited the suppressed re‐absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift‐engineered QDs with suppressed re‐absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity‐time symmetry materials and devices.  相似文献   

9.
Photoluminiscent (PL) cellulose aerogels of variable shape containing homogeneously dispersed and surface-immobilized alloyed (ZnS)x(CuInS2)1?x/ZnS (core/shell) quantum dots (QD) have been obtained by (1) dissolution of hardwood prehydrolysis kraft pulp in the ionic liquid 1-hexyl-3-methyl-1H-imidazolium chloride, (2) addition of a homogenous dispersion of quantum dots in the same solvent, (3) molding, (4) coagulation of cellulose using ethanol as antisolvent, and (5) scCO2 drying of the resulting composite aerogels. Both compatibilization with the cellulose solvent and covalent attachment of the quantum dots onto the cellulose surface was achieved through replacement of 1-mercaptododecyl ligands typically used in synthesis of (ZnS)x(CuInS2)1?x/ZnS (core–shell) QDs by 1-mercapto-3-(trimethoxysilyl)-propyl ligands. The obtained cellulose—quantum dot hybrid aerogels have apparent densities of 37.9–57.2 mg cm?3. Their BET surface areas range from 296 to 686 m2 g?1 comparable with non-luminiscent cellulose aerogels obtained via the NMMO, TBAF/DMSO or Ca(SCN)2 route. Depending mainly on the ratio of QD core constituents and to a minor extent on the cellulose/QD ratio, the emission wavelength of the novel aerogels can be controlled within a wide range of the visible light spectrum. Whereas higher QD contents lead to bathochromic PL shifts, hypsochromism is observed when increasing the amount of cellulose at constant QD content. Reinforcement of the cellulose aerogels and hence significantly reduced shrinkage during scCO2 drying is a beneficial side effect when using α-mercapto-ω-(trialkoxysilyl) alkyl ligands for QD capping and covalent QD immobilization onto the cellulose surface.  相似文献   

10.
Reverse micelle chemistry-derived Cu-doped Zn1?xCdxS quantum dots (QDs) with the composition (x) of 0, 0.5, 1 are reported. The Cu emission was found to be dependent on the host composition of QDs. While a dim green/orange emission was observed from ZnS:Cu QDs, a relatively strong red emission could be obtained from CdS:Cu and Zn0.5Cd0.5S:Cu QDs. Luminescent properties of undoped QDs versus Cu-doped ones and quantum yields of alloyed ZnCdS versus CdS QDs are compared and discussed. To enhance Cu-related red emission of CdS:Cu and Zn0.5Cd0.5S:Cu core QDs, core/shell structured QDs with a wider band gap of ZnS shell are also demonstrated.  相似文献   

11.
以硫脲为硫源,采用谷胱甘肽(GSH)和柠檬酸钠(SC)为配体,通过水热法制备了水溶性AgInS2/ZnS(AIS/ZnS)核/壳结构量子点。系统研究了反应温度和配体用量对量子点的合成及其荧光性能的影响。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见吸收光谱(UV-Vis)和光致发光光谱(PL)分别对量子点的物相、形貌和光学性能进行了表征,并考察了量子点的稳定性。实验结果表明,随着反应温度从70℃升高至90℃,促进了ZnS壳层的形成,有效地钝化了量子点的表面缺陷,获得的AIS/ZnS核/壳量子点的发光强度显著提高,发光峰位从600 nm蓝移至580 nm。配体的添加可以有效地平衡Zn^2+的化学反应活性,减缓ZnS壳层的生长,抑制核壳界面缺陷的形成,还能消除量子点的表面态,当nGSH/nZn^2+=2.0,nSC/nZn^2+=2.5时,AIS/ZnS量子点的荧光性能最佳。此外,AIS/ZnS核/壳结构量子点还具有优异的光学稳定性。  相似文献   

12.
In this study, we report on a new method for the synthesis of ZnS quantum dots (QDs). The synthesis was carried out at low temperature by a chemical reaction between zinc ions and freshly reduced sulfide ions in ethanol as reaction medium. Zinc chloride and elemental sulfur were used as zinc and sulfur sources, respectively and hydrazine hydrate was used as a strong reducing agent to convert elemental sulfur (S8) into highly reactive sulfide ions (S2−) which react spontaneously with zinc ions. This facile, less toxic, inexpensive route has a high yield for the synthesis of high quality metal sulfide QDs. Transmission electron microscopy (TEM) image analysis and selected area electron diffraction (SAED) reveal that ZnS QDs are less than 3 nm in diameter and are of cubic crystalline phase. The UV-Vis absorption spectrum shows an absorption peak at 253 nm corresponding to a band gap of 4.9 eV, which is high when compared to the bulk value of 3.68 eV revealing strong quantum confinement. PL emission transitions are observed at 314 nm and 439 nm and related to point defects in ZnS QDs.  相似文献   

13.
Reported are quantitative studies of the energy transfer from water-soluble CdSe/ZnS and CdSeS/ZnS core/shell quantum dots (QDs) to the Cr(III) complexes trans-Cr(N(4))(X)(2)(+) (N(4) is a tetraazamacrocycle ligand, X(-) is CN(-), Cl(-), or ONO(-)) in aqueous solution. Variation of N(4), of X(-), and of the QD size and composition allows one to probe the relationship between the emission/absorption overlap integral parameter and the efficiency of the quenching of the QD photoluminescence (PL) by the chromium(III) complexes. Steady-state studies of the QD PL in the presence of different concentrations of trans-Cr(N(4))(X)(2)(+) indicate a clear correlation between quenching efficiency and the overlap integral largely consistent with the predicted behavior of a F?rster resonance energy transfer (FRET)-type mechanism. PL lifetimes show analogous correlations, and these results demonstrate that spectral overlap is an important consideration when designing supramolecular systems that incorporate QDs as photosensitizers. In the latter context, we extend earlier studies demonstrating that the water-soluble CdSe/ZnS and CdSeS/ZnS QDs photosensitize nitric oxide release from the trans-Cr(cyclam)(ONO)(2)(+) cation (cyclam = 1,4,8,11-tetraazacyclotetradecane) and report the efficiency (quantum yield) for this process. An improved synthesis of ternary CdSeS core/shell QDs is also described.  相似文献   

14.
The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne–azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy‐filtered transmission electron microscopy (EF‐TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic‐core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper‐induced PL quenching can be interesting for the design of sensitive cation sensors, copper‐free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates.  相似文献   

15.
Non-toxic, environment-benign colloidal CuInS(2) (CIS) quantum dots (QDs) were synthesized through a facile noninjection, one-pot approach by reacting Cu and In precursors with dodecanethiol dissolved in 1-octadecence at 220 °C. The Cu:In precursor molar ratio was varied from 1:1 to 1:4 to intentionally generate Cu-deficient CIS QDs. Depending on the stoichiometry of the QDs, their emission peak wavelengths were tuned in red-deep red region. More Cu-deficient CIS QDs (Cu:In=1:4) were found to be more efficient than ones with Cu:In=1:1. After successive ZnS shell was overgrown on the surface of core QDs with Cu:In=1:4, the resulting core/shell QDs exhibited a highly efficient yellow emission with a quantum yield of ~50%. A substantially blue-shifted emission from the core/shell QDs versus core ones was described by suggesting an alternative recombination pathway that may be induced by the ZnS shell coating.  相似文献   

16.
The single-pot synthesis of highly crystalline and fluorescent chalcopyrite CuInS2 (CIS) colloidal nanoparticles has been reported by thermal decomposition of metal ethyl xanthate (at ~110 °C) for the first time. The fluorescence emission wavelength can also be readily tuned from the UV to the visible region by merely prolonging the reaction time, as the PL emission may be varied from 550 to 675 nm. The synthesized CIS is subjected to postdeposition treatment with CdS/ZnS in one pot route using cadmium/zinc xanthate at low temperature (~80 °C) to improve the quantum yield of core–shell (CIS/CdS or ZnS) nanocrystallites as compared to CIS core. The stability of core–shell particularly CIS/ZnS system upon continuous laser exposure suggests the formation of surface bonds with superior mechanical stability. This low-cost synthesis of such nontoxic QDs using green chemical routes is a promising approach for the fabrication of optoelectronic and biosensing devices. Graphical Abstract
?  相似文献   

17.
This paper reports a facile and general method for preparing an imprinted polymer thin shell with Mn-doped ZnS quantum dots (QDs) at the surface of silica nanoparticles by stepwise precipitation polymerization to form the highly-controllable core–shell nanoparticles (MIPs@SiO2–ZnS:Mn QDs) and sensitively recognize the target 2,4-dichlorophenol (2,4-DCP). Acrylamide (AM) and ethyl glycol dimethacrylate (EGDMA) were used as the functional monomer and the cross-linker, respectively. The MIPs@SiO2–ZnS:Mn QDs had a controllable shell thickness and a high density of effective recognition sites, and the thickness of uniform core–shell 2,4-DCP-imprinted nanoparticles was controlled by the total amounts of monomers. The MIPs@SiO2–ZnS:Mn QDs with a shell thickness of 45 nm exhibited the largest quenching efficiency to 2,4-DCP by using the spectrofluorometer. After the experimental conditions were optimized, a linear relationship was obtained covering the linear range of 1.0–84 μmol L−1 with a correlation coefficient of 0.9981 and the detection limit (3σ/k) was 0.15 μmol L−1. The feasibility of the developed method was successfully evaluated through the determination of 2,4-DCP in real samples. This study provides a general strategy to fabricate highly-controllable core–shell imprinted polymer-contained QDs with highly selective recognition ability.  相似文献   

18.
ZnS hollow microspheres were synthesized by a dl ‐aspartic acid mediated hydrothermal route. dl ‐aspartic acid plays an important role as crystal growth soft template, which regulates the release of Zn2+ ions for the formation of ZnS hollow spheres. The formation of these hollow spheres was mainly attributed to an Ostwald ripening process. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), UV/Vis spectroscopy (UV), and photoluminescence (PL). The shells of the microspheres were composed of ZnS quantum dots (QDs) with the average size of 2.31 nm. The average microspheres diameter is 0.5–3.5 μm. The shell thickness of the hollow sphere is ≈?300 nm. The optical bandgap energy increased significantly compared to the bulk ZnS material due to the strong quantum confinement effect. Two strong emissions at ≈?425 nm and ≈?472 nm in the photoluminescence (PL) spectrum of ZnS hollow microspheres indicate strong quantum confinement because of the presence of QDs.  相似文献   

19.
The present study is based on effect of dispersing Cd1?xZnxS/ZnS core/shell quantum dots (QDs) on the memory behaviour of nematic liquid crystal 2020 with the variation of dopant concentration and applied voltage. Around 26% and 45% memory storage in QDs dispersed nematic matrix (MIX 1 and MIX 2) has been the core finding. The presence of ionic charges at low-frequency regime along with their reduction in QDs dispersed nematic matrix has been confirmed from tan δ curve. Pure nematic LC as well as nematic/QD mixtures depict volatile memory effect that depends upon concentration of QDs. The existence of memory due to storage of charge on QDs has been further confirmed from the dielectric, polarising optical micrographs and electro optical study under the influence of bias voltage. The observation of memory effect is attributed to the ion capturing and ion releasing phenomenon. The dispersion of QDs in nematic material plays an important role to enhance memory parameter by capturing and releasing the ionic charges under the application of bias voltage which has been confirmed from capacitance-voltage curve.  相似文献   

20.
Electrochemiluminescence resonance energy transfer (ECRET) between CdSe/Zns quantum dots (QDs) as the donor and cyanine dye (Cy5) molecules as the acceptor in QD-Cy5 conjugates with DNA or protein as the linker was reported. When a negative potential was applied, the excited-state CdSe/ZnS* was produced in 0.1 mol/L phosphate buffer (pH 7.4) containing 0.1 mol/L K2S2O8 and 0.1 mol/L KNO3 (PB-K2S2O8). The CdSe/ZnS* went back to the ground-state CdSe/ZnS to emit light at 590 nm or to transfer energy to proximal ground-state Cy5 molecules. The resultant excited-state Cy5 molecules relaxed to their ground state by emitting a light at 675 nm. The ECRET between QDs and Cy5 was used to evaluate interactions between DNAs and to measure conformational changes of DNAs and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号