首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
The cone penetrometer is a simple versatile device which is widely used to monitor the strength of a soil in terms of its resistance to the penetration of a standard cone. The soil penetration resistance is a function of soil moisture content, soil specific weight and soil type. The soil type is characterised by means of a clay ratio which is the ratio of the clay content of the soil to the content of silt and sand.Based on the classical bearing capacity theories for strip foundations, a general cone penetration resistance equation is developed to represent the variability of cohesion and friction angle by means of soil type and moisture content. The empirical relationship is shown to give an accurate prediction of the cone penetration resistance for a wide range of soils from a loamy sand to a heavy clay (clay ratios 0.10–1.60) and over a wide spectrum of soil moisture contents from 10 to 65% w/w.  相似文献   

2.
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s ratio and Drucker–Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory – Auburn University (NSDL-AU) soil compaction model. The stress–strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair (‘slave-master’) algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m−3 and (2) 1.71 Mg m−3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU ‘virgin’ model.  相似文献   

3.
This paper reviews experimental methods for the conversion of cone index measurements to bevameter parameters in support of vehicle soil/tire/track interactions for two general soil types, sand and lean clay. The accurate prediction of traction, motion resistance, and sinkage of tire/tracks off-road requires estimates of soil strength. Equipment used in the measurement of soil strength to support predictions of off-road mobility include the bevameter and the cone penetrometer. The portability of the cone penetrometer and rapid estimates of spatial/temporal variability in all terrain conditions make it an invaluable tool. The bevameter, a less portable tool, is used for the mechanical analysis of soils. The bevameter measures parameters defining soil strength in terms of cohesive modulus of soil deformation (kc), frictional modulus of soil deformation (kφ), exponent of soil sinkage (n), cohesion (c), angle of internal friction (φ), and the plate pressure at 1 in. (2.54 cm) of penetration (K) (Bekker, 1969). The field of terramechanics would greatly benefit from having the ability to convert cone penetrometer data in areas where bevameter parameters are difficult to collect. That ability to convert from cone index to bevameter parameters could be used for the large sets of existing cone index data to support determination of traction and motion resistance. This paper examines those methods for converting cone index to bevameter plate penetration parameters kc, kφ, and n.  相似文献   

4.
This study focuses on the development of a methodology for the determination of some in situ parameters for off-road vehicle mobility on sandy soils. The stress field in the vicinity of and at the interface between a wedge and soil was determined by solving the stress equations using the method of characteristics. The governing equations were solved numerically by using backward finite difference method. The proposed method allows the prediction of any two of the in situ soil parameters δ, φ, and γ (respectively, the interfacial friction angle between the material of a wedge penetrometer and the soil, the internal friction angle, and the unit weight of the soil), given the value of any one of them and the results of penetration tests of two different apex angle wedges. The predictions and the measured values are in agreement.  相似文献   

5.
The motion and state of soil at the interface with a penetrating rigid projectile is studied by numerical solution of the problem of a cylindrical projectile which expands and at the same time moves translationally along its axis in soil. The soil behavior is described using the model of a compressible elastoplastic medium with transition to a plastic state depending on the pressure in it. It is shown that a thin layer of soil at the interface with the projectile nose should be set in motion and move together with the projectile without sliding. An analysis is performed of the validity of using the dry friction law to determine the shear stresses on the projectile surface during penetration. The heat release in the soil layer at the interface due to internal friction and its possible effect on the penetration are estimated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 116–127, November–December, 2005.  相似文献   

6.
Cone index, as determined by a cone penetrometer, is frequently used as a measure of soil strength. The index is a compound parameter involving components of shear, compressive and tensile strength and soil metal friction. In order to assess the effect of soil type and condition on the relative contributions of these components to penetration resistance, the forces required to push blunt and sharp probes into two soils under a range of moisture contents and bulk densities were investigated. The maximum penetration force in homogeneous soil was not uniquely related to dry bulk density or cohesion, but varied with soil moisture content.At high and low moisture contents, the soil tended to interact with the shaft of the penetrometer thus increasing the resistance to penetration. At low moisture content, bodies of compressed soil formed in front of the probe, effectively changing the probe geometry.It was concluded that interpretation of cone index in typical layered field soils is difficult. Even in homogeneous soils, the proportion of shear, compressive and tensile components that the cone index reflects varies with soil condition.  相似文献   

7.
A field experiment was conducted on alluvial soil with sandy loam texture, in a complete randomized design, to determine the compaction of sub-soil layers due to different passes of a test tractor with varying normal loads. The selected normal loads were 4.40, 6.40 and 8.40 kN and the number of passes 1, 6, 11 and 16. The bulk density and cone penetration resistance were measured to determine the compaction at 10 equal intervals of 5 cm down the surface. The observations were used to validate a simulation model on sub-soil compaction due to multiple passes of tractor in controlled conditions. The bulk density and penetration resistance in 0–15 cm depth zone continuously increased up to 16 passes of the test tractor, and more at higher normal loads. The compaction was less in different sub-soil layers at lower levels of loads. The impact of higher loads and larger number of passes on compaction was more effective in the soil depth less than 30 cm; for example the normal load of 8.40 kN caused the maximum bulk density of 1.53 Mg/m3 after 16 passes. In 30–45 cm depth layer also, the penetration resistance increased with the increase in loads and number of passes but to a lesser extent which further decreased in the subsoil layers below 45 cm. Overall, the study variables viz. normal load on tractor and number of passes influenced the bulk density and soil penetration resistance in soil depth in the range of 0–45 cm at 1% level of significance. However, beyond 45 cm soil depth, the influence was not significant. The R2 calculated from observed and predicted values with respect to regression equations for bulk density and penetration resistance were 0.7038 and 0.76, respectively.  相似文献   

8.
Cylindrical soil probes measuring 300 mm in diameter by 300 mm in height were prepared in the laboratory using samples extracted from a well drained loamy soil (FAO classification: Vertic Luvisol). These probes were compacted at different moisture contents [3, 6, 9, 12, 15 and 18 (% w/w)] and using different compaction energies (9.81, 49.05, 98.1 and 981 J). The soil penetration resistance was determined by means of the ASAE 129 mm2 base area cone and seven other different cones with base sizes of 175, 144, 124, 98, 74, 39 and 26 mm2. The variability of the penetration resistance measurements increased as the size of the cone decreased. Nevertheless, the penetration resistance values proved to be independent of the cone used, as long as the size of the latter was equal to or greater than 98 mm2. This confirms the possibility of using cones with areas smaller than the ASAE standard when measurements are to be carried out in dry soils with high levels of mechanical resistance. The experimental data were used to develop an empirical model, a linear additive model on a log–log plane, capable of estimating soil bulk density depending on soil penetration resistance, soil moisture content and depth. This model has provided good results under field conditions and has allowed soil bulk density profiles and accumulated water profiles to be accurately estimated.  相似文献   

9.
Effect of wetting and drying on soil physical properties   总被引:3,自引:0,他引:3  
Agricultural soils are subject to seasonal wetting and drying cycles. Effect of drying stress, as influenced by one cycle of wetting and drying, on physical properties of a clay–loam soil was investigated in the laboratory. The physical properties studied were soil bulk density, cone penetration resistance, shear strength, adhesion and aggregate size and stability. Three drying stress treatments were made by wetting air-dried soil of initial moisture content of 12% (on dry weight basis) to three different higher moisture contents, namely 27, 33 and 40%, and then drying each of them back to their original moisture content of 12%. Thus, the soil was subjected to three different degrees of drying stress. The results showed that the soil strength indicated by cone penetration resistance and cohesion, and soil aggregate size, increased with the degree of drying stress. However, the soil bulk density did not change significantly with the drying stress.  相似文献   

10.
A direct shear test with a superimposed impact was used to simulate the action of a track on the soil surface and to study the effect on soil surface properties. Results showed that impact increased bulk density, reduced saturated hydraulic conductivity and decreased cone penetrometer resistance. An impact plus shear treatment reduced the residual shear strength to approximately 60 kPa compared with 85 kPa for a shear only treatment. Water tension also greatly influenced the changes measured with the order of greatest change being −5>−10>−60>t-100>−300 kPa. The results are discussed with respect to soil trafficability and soil structural change with vehicle passage.  相似文献   

11.
An instrumented portable device that measures soil sinkage, shear, and frictional parameters in situ was developed to investigate the complexity of soil-traction device interaction process. The device was tested to determine its ability to measure soil frictional and shear characteristics. Extensive laboratory tests were conducted using dry and moist Capay clay and Yolo loam soils. In addition, field tests were also conducted in a Yolo loam field located at the UC Davis Agricultural Experiment Station. The Cohron sheargraph was also tested under the same laboratory experimental conditions to determine adhesion, soil-metal friction, cohesion, and angle of internal friction of soil. The analysis of experimental data indicated that soil adhesion and soil-metal friction were found to be functions of the intercept and slope values of cone torque versus cone index plot (r2 = 0.94 and 0.95, respectively). Moreover, soil cohesion was found to be related to adhesion by the constrained adhesion relationship, and soil angle of internal friction was proportional to soil-metal friction as reported by Hettiaratchi [7] and [8]. These results imply that a simpler device consisting of a rotating cone can be developed to measure soil frictional and shear characteristics. Preliminary results showed that the soil parameters determined using this device predicted the maximum net traction developed by four different radial ply tires tested by Upadhyaya et al. [18] under similar soil conditions quite well. These results indicate that the parameters obtained from the device could be useful in obtaining traction related parameters of a soil-tractive device interaction process.  相似文献   

12.
静力触探锥头阻力的近似理论与实验研究进展   总被引:5,自引:0,他引:5  
崔新壮  丁桦 《力学进展》2004,34(2):251-262
锥头阻力在静力触探试验中扮演着十分重要的角色.从不同角度,对触探中锥头阻力的研究进行简要阐述,对承载力理论、空洞膨胀理论、应变路径法及运动点位错法等几种理论分析方法进行了回顾.另外,对数值分析和实验研究的进展情况进行了叙述.并对各种方法的适用性进行了比较.承载力理论虽然简单,但忽略了土的压缩性和探杆周围初始应力的增加,所以不能精确地模拟锥头的深层贯入.空洞膨胀理论提供了一个分析锥头阻力的简单而较精确的方法,它考虑了土的压缩性(或膨胀性)和锥头贯入过程中锥杆周围应力增加的影响.但这种方法是将锥头贯入与空洞膨胀之间做了一个等效模拟,所以不同的模拟方法,得到的结果差别较大.应变路径法能够有效解决饱和粘土中的不排水贯入,但不适用于砂土.运动点位错法因为考虑了部分排水,所以能较好地预测固结系数,但采用了线弹性分析,故位错法在其他方面的应用还需要大量的试验验证.有限元法在处理锥头贯入这类慢侵彻问题时缺乏一种很好的处理技术,导致它在进行破坏荷载计算时有显著的误差和数值计算困难.标定槽试验将在验证和建立锥头阻力与土的性能关系方面继续起到一个重要作用,但其结果需经过校正后才可应用到现场.最后对该领域的研究趋势进行了讨论.   相似文献   

13.
This four-year experiment was conducted in north-west Slavonia (agricultural area of Croatia) to evaluate the effects of different tillage systems on compaction of silty loam soil (Albic Luvisol). The compared tillage systems were: (1) conventional tillage (CT), (2) conservation tillage (CM), (3) no-tillage system (NT), and the crop rotation was corn (Zea mays L.) – winter wheat (Triticum aestivum L.) – corn – winter wheat. For detecting the soil compaction, bulk density and penetration resistance were measured during the growing seasons. In all seasons and tillage systems, the bulk density and penetration resistance increased with depth and the greatest increase from surface to the deepest layer in average was observed at CT system. The bulk density and penetration resistance increased at all tillage systems during the experiment, but the greatest increase was also observed at CT system. The greatest bulk density (1.66 Mg m−3) and the greatest increase of 6.4% were observed at CT system in the layer 30–35 cm. In the first season, the bulk density was the greatest at NT system, but during the experiment the lowest average increase of 1.9% was observed at this system. The greatest penetration resistance of all measurements (5.9 MPa) was observed in the last season at CT system in depth of 40 cm. The lowest average increase of penetration resistance 11.4% was also observed at NT system. The highest yield of corn in the first season was achieved with CT system while in other seasons the highest yield of winter wheat and corn was achieved with CM system.  相似文献   

14.
Principles of soil-tool interaction   总被引:1,自引:0,他引:1  
  相似文献   

15.
Determination of the soil pressure distribution around a cone penetrometer   总被引:2,自引:0,他引:2  
The objective of this paper was to investigate the pressure distribution around a cone penetrometer using a pressure sensing mat under laboratory conditions. The investigation was conducted under (1) constrained conditions using cylindrical split pipe molds and (2) unconstrained conditions using a soil box. These tests were conducted in Capay clay and Yolo loam soil containing two different moisture conditions and two compaction levels.In the constrained tests, a maximum radial pressure of 111 kPa was observed in the Capay clay soil with 3.4–4.3% d.b. moisture content and three blows of compaction (cone index value of 2040 kPa) when using the 41 mm diameter split pipe mold. These pressure levels decreased to 82 and 22 kPa, respectively, when 65 and 88 mm diameter molds were used. In both the Capay clay and Yolo loam tests, the average radial pressure and average cone index values showed similar trends.In the unconstrained tests, a maximum pressure of 9.0 kPa was observed in the Capay clay with 4.5% d.b. moisture content and three blows of compaction (cone index value of 550 kPa) at a horizontal distance of 25.4 mm from the vertical axis of the cone penetrometer and minimum pressure levels in the range of 0.2–0.3 kPa when the horizontal distance of the penetrometer was in the range of 56.8–66 mm. The pressure levels are much smaller than the ones obtained in the constrained tests and may suggest that the pressure distribution under field conditions is small at a distance of 25.4 mm or higher from the tip of the cone.The experimental data were statistically analyzed to identify significant factors. The results of the analysis for the constrained test indicated that the mold diameter and number of blows significantly increased the pressure readings within the soil mass. Increasing the mold diameter led to a decrease in the average radial pressure and increasing the number of blows contributed to an increase in the average radial pressure. In the unconstrained test, the average radial pressure distribution at a given point were significantly influenced by the horizontal distance of the point from the vertical axis passing through the center of the penetrometer shaft, soil type, and soil moisture content. Higher pressure values were obtained in the Capay clay tests compared to the Yolo loam tests. In all cases, the pressure levels were greater for the drier soil than for the moist soil.  相似文献   

16.
The results of an experimental investigation of the local mean and fluctuating friction at the wall of a horizontal tube are presented for the case where a gas-liquid stream flows in the tube with a wide range of regime parameters. The electrodiffusion method is used for measuring the friction. Curves of the tangential stresses along the perimeter of the tube as well as along its length are constructed, permitting an objective determination of certain flow regimes. The experimental results are compared with those of the existing computational methods.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 101–108, March–April, 1973.  相似文献   

17.
A static cone penetrometer for deep ocean exploration has been developed and successfully tested in soft sea floor sediments at an ocean depth in excess of 1200 m. The penetration resistance of a standard 60-deg cone is detected by appropriately insulated strain gauges whose output may be monitored remotely from the sensing unit. Initial deployment of the device was aboard the submersible Deep Quest in the San Diego Trough off the coast of southern California. Resistances as low as 7 N (1·6 lb) were measured near the surface of the sediment, generally increasing with depth. At the maximum depth of penetration of 1.1 m (restricted by the limited negative buoyancy of the submersible) tip resistance reached 80 N (18 lb). By means of a conventional bearing capacity analysis, the cone resistance was converted to in situ strength and compared to vane shear measurements taken in the immediate vicinity of the penetration tests. Reasonable agreement between vane shear and penetration strengths were obtained for an assumed bearing capacity factor Nc = 9.  相似文献   

18.
Numerical studies using the Material Point Method (MPM) have been conducted recently to model snow penetration tests for fine-grained and coarse-grained snows using small cones with diameters ranging from 2.5 mm to 4 mm, and cone half-angles between 15° and 45°. Although numerical studies have gained physical insight of these tests, due to the lengthy computation time needed for the MPM simulations, it is not feasible to use these simulations to develop a stochastic model to assess the large variations of the mechanical properties of snow typically shown in tests. In this paper, we present a simple and efficient physics-based analytical model based on equilibrium and a cavity expansion solution upon which a stochastic model is built to obtain calibrated material parameters for a Drucker–Prager (DP) model such that prediction of the model can be made. Sensitivity analysis of the analytical model indicates that cohesion and interfacial shear (friction) factor contribute significantly to the penetration hardness whereas the friction angle has little contribution. The calibrated material parameters are similar to those estimated via the MPM simulations. The quality of the stochastic model, when compared with test data, was assessed using four interval-based validation metrics with good results.  相似文献   

19.
Compaction effects and soil stresses were examined for four tractor tyres under three inflation pressures: 67, 100 and 150% of the recommended pressure. The four tyres were 18.4 R 38, 520/70 R 38, 600/65 R 38 and 650/60-38 and they carried a wheel load of 2590 kg. The 650/60-38 was a bias-ply tyre while the other three were radial tyres. Increased inflation pressure significantly increased all measured parameters: rut depth, penetration resistance and soil stress at 20 and 40 cm depth. The 18.4 R 38 caused a greater rut depth and penetration resistance than the other tyres, which did not differ significantly from each other. The soil stress was highest for the 18.4 R 38, followed by the 650/60-38. The low-profile tyres decreased compaction compared with the 18.4–38 tyre, mainly by allowing a lower inflation pressure. The use of low-profile tyres did not reduce compaction if not used at a lower inflation pressure. The bias-ply tyre caused a higher stress in the soil than the radial tyres when used with the same inflation pressure, but the compaction effects in terms of rut depth and penetration resistance were not greater for this tyre than for the radial low-profile tyres.  相似文献   

20.
Using cone index as an indication of soil strength, empirical equations are developed in accordance with soil mechanics theory to relate soil moisture content to plough draught. The plough draught equation comprises a quasi-static component dependent on cone index and a dynamic component which is a function of the soil specific weight, plough speed and mouldbard tail angle. It is further argued that the cohesive and frictional components of the cone penetration resistance can be predicted by means of a simple equation comprising a reciprocal function of the square of the soil moisture content and a linear function of the soil specific weight. The cone index equation explained 98% of the experimental data for threthree soils over a wide range of moisture contents. These empirical equations, together with a soil moisture model, provide a method of predicting plough draught directly from soil and meteorological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号