首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noninvasive in vivo functional optical imaging of the intact retina is demonstrated by using high-speed, ultrahigh-resolution optical coherence tomography (OCT). Imaging was performed with 2.8 microm resolution at a rate of 24,000 axial scans per second. A white-light stimulus was applied to the dark-adapted rat retina, and the average reflectivities from different intraretinal layers were monitored as a function of time. A 10%-15% increase in the average amplitude reflectance of the photoreceptor outer segments was observed in response to the stimulus. The spatial distribution of the change in the OCT signal is consistent with an increase in backscatter from the photoreceptor outer segments. To our knowledge, this is the first in vivo demonstration of OCT functional imaging in the intact retina.  相似文献   

2.
Xu C  Vinegoni C  Ralston TS  Luo W  Tan W  Boppart SA 《Optics letters》2006,31(8):1079-1081
The spectroscopic content within optical coherence tomography (OCT) data can provide a wealth of information. Spectroscopic OCT methods are frequently limited by time-frequency trade-offs that limit high spectral and spatial resolution simultaneously. We present spectroscopic spectral-domain optical coherence microscopy performed with a multimodality microscope. Restricting the spatial extent of the signal by using high-numerical-aperture optics makes high-resolution spectroscopic information accessible, facilitated with spectral-domain detection. Simultaneous acquisition of multiphoton microscopy images is used to validate tissue structure and localization of nuclei within individual cells.  相似文献   

3.
采用频域技术的OCT系统,深度扫描信息由背向散射光谱的傅立叶反变换获得,简化了轴向扫描过程,从而使快速OCT成像成为可能.为了实现复杂生物组织的OCT快速成像,消除谱频域OCT的“混叠”现象、重建样品的真实层析结构,本文引入了相移干涉技术,构建了一套满量程复谱频域OCT实验系统,并为系统设计了特殊的分束镜和移相器,为最终实现复杂生物组织的OCT快速成像提供了条件.  相似文献   

4.
Optical coherence tomography with plasmon resonant nanorods of gold   总被引:1,自引:0,他引:1  
We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm(-1) and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed.  相似文献   

5.
张凤生  王海峰  张阳 《光子学报》2009,38(7):1820-1825
将光学相干层析成像系统采样臂的光纤与聚焦系统和被测样品作为一个整体来模拟光学相干层析成像信号的形成机理.通过追迹采样光束中每一光子在聚焦系统和被测样品中的随机传输轨迹,来决定该光子对光学相干层析成像信号是否有贡献及贡献大小.对样品IntralipidTM的模拟结果与实验结果表明:1)高散射系数和弱前向散射是引起光学相干层析成像信号随测量深度增加迅速减弱的主要原因;2)对于确定的聚焦系统,光纤的数值孔径有一最佳取值范围.数值孔径太小,则光学相干层析成像信号很弱;数值孔径超出这一范围继续增大,光学相干层析成像信号变化很小.3)当光纤的光轴偏离聚焦系统的光轴h距离时,光学相干层析成像信号随h的增加而减弱.  相似文献   

6.
We propose a fiber optic single-unit but dual-mode optical imaging system that can provide fast cross-sectional imaging capabilities of swept-source optical coherence tomography (SS-OCT) and functional capabilities of fluorescence spectroscopy (FS). By adopting a fiber optic FS system into a fiber-based SS-OCT system, a compact and effective multimodal single-unit SSOCT-FS system is achieved. Here, the key element of the proposed multimodal imaging system is a specially designed fiber coupler based on double-clad fiber (DCF), which has only cladding-mode coupling capability. The DCF couplers are fabricated with home-drawn DCF by several fabrication methods; a twisting method, a side-polishing method and a fused biconical tapered (FBT) method. Experimentally, the FBT method provides rather flat cladding mode coupling efficiency over 40% in a wide wavelength range. With this specially designed DCF coupler, the OCT signal and the fluorescence signal is measured independently but with a single-unit system. The performance of the SSOCT-FS system is confirmed by measuring the cross-sectional image and the fluorescence signal of a photosensitizer chlorin e6 injected in-vivo rat tumor model.  相似文献   

7.
胡喆皓  上官紫微  邱建榕  杨珊珊  鲍文  沈毅  李鹏  丁志华 《物理学报》2018,67(17):174201-174201
鉴于不同生理病理状态下组织复折射率实部的变化不大,传统光学相干层析(OCT)成像技术在分子特异性识别上存在先天不足.为此,本文提出了基于受激辐射信号的OCT成像方法,可在实现传统散射成像的同时,实现基于受激辐射信号的分子成像.在超高分辨率谱域OCT系统的基础上,通过增设光谱分光与调制抽运光支路,建立了基于单宽谱光源的抽运探测谱域OCT系统,详细推导了调制抽运下受激辐射信号的获取与成像公式.利用搭建的抽运探测谱域OCT系统,实现了瞬态受激辐射信号的相干探测.基于同时获取的受激辐射OCT信号和传统OCT信号,成功重构了氮化物粉末构建样品的基于受激辐射信号的分子对比OCT图像.  相似文献   

8.
In this study, dynamics of nanoparticles penetrating and accumulating in biotissue (healthy skin) was investigated in vivo by the noninvasive method of optical coherence tomography (OCT). Gold nanoshells and titanium dioxide nanoparticles were studied. The processes of the nanoparticles penetration and accumulation in biotissue are accompanied by the changes in optical properties of skin which affect the OCT images. The continuous OCT monitoring of the process of the nanoparticles penetration into skin showed that these changes appeared in 30 min after application of nanoparticles on the surface; the time of accumulation of maximal nanoparticles concentration in skin was observed in period of 1.5–3 h after application. Numerical processing of the OCT signal exhibited the increase in contrast between upper and lower parts of dermis and contrast decay of the hair follicle border during 60–150 min. The transmission electron microscopy technique confirmed accumulation of the both types of nanoparticles in biotissue. The novelty of this study is presentation of OCT ability to in vivo monitor dynamics of nanoparticles penetration and their re-distribution within living tissues.  相似文献   

9.
Buffered Fourier domain mode-locked (FDML) lasers are demonstrated for dynamic phase-sensitive optical coherence tomography (OCT) and 3D OCT phase microscopy. Systems are operated at sweep speeds of 42, 117, and 370 kHz, and displacement sensitivities of 39, 52, and 102 pm are achieved, respectively. Sensitivities are comparable to spectrometer-based OCT phase microscopy systems, but much faster acquisition speeds are possible. An additional factor of sqrt 2 improvement in noise performance is observed for differential phase measurements, which is important for Doppler OCT. Dynamic measurements of piezoelectric transducer motion and static 3D OCT phase microscopy are demonstrated. Buffered FDML lasers provide excellent displacement sensitivities at extremely high sweep speeds.  相似文献   

10.
Choma MA  Yang C  Izatt JA 《Optics letters》2003,28(22):2162-2164
We describe fiber-based quadrature low-coherence interferometers that exploit the inherent phase shifts of 3 x 3 and higher-order fiber-optic couplers. We present a framework based on conservation of energy to account for the interferometric shifts in 3 x 3 interferometers, and we demonstrate that the resulting interferometers provide the entire complex interferometric signal instantaneously in homodyne and heterodyne systems. In heterodyne detection we demonstrate the capability for extraction of the magnitude and sign of Doppler shifts from the complex data. In homodyne detection we show the detection of subwavelength sample motion. N x N (N > 2) low-coherence interferometer topologies will be useful in Doppler optical coherence tomography (OCT), optical coherence microscopy, Fourier-domain OCT, optical frequency domain reflectometry, and phase-referenced interferometry.  相似文献   

11.
For the single-shot full-field optical coherence tomography (OCT) using spatially phase-modulated reference light, the basic characteristics have been simulated. At low spatial frequencies, the OCT signal intensity is enhanced twofold owing to subtractions, and with increasing the spatial frequency, the OCT signal intensity decreases 0.636 times at half the Nyquist frequency. OCT signal intensities also depend on orientations in images. Residual noninterference components of signal intensities between adjacent uniform areas increase background noise and reduce the system sensitivity. In the reference light, the optimum phase difference between adjacent uniform areas is 180 deg. Deviations from 180 deg reduce subtracted interference components. It is important that interference intensity, noninterference components and phases between adjacent uniform areas be approximately the same to obtain the OCT image with the reduction of background noise stably.  相似文献   

12.
Optical coherence tomography (OCT) is a noninvasive technique that provides micrometer-scale imaging of tissue. As most biological tissues are considered turbid, it causes attenuation of the OCT signal and limits the depth penetration. Although a few algorithms had been developed to compensate the attenuation, almost all of them need to extract the scattering parameters before doing the compensation procedure. Because the real biological samples are anisotropic and multilayer-like structure, it is not time-efficient to model and solve these scattering parameters. This paper introduces a new method to compensate the OCT signal attenuation in depth. By analyzing the input signal, a compensation function is adaptively derived for each A-scan line, which can be used effectively to compensate the energy loss in the large sections and enhance the details in the deep, dark-like areas. Three bio-samples, a piece of onion, a Poecilia Wingei fish and a piece of rabbit abdominal aorta, were used to test our method. OCT images obtained by a swept-source OCT system were processed by the proposed method. Results show the visualization of structures in OCT images has been evidently improved, especially in deep region.  相似文献   

13.
Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.  相似文献   

14.
光学相干层析成象技术的医学诊断应用   总被引:4,自引:3,他引:1  
陈炜  薛平 《光子学报》1999,28(11):970-973
利用超短脉冲飞秒激光建立了OCT实验装置,通过对动物肾脏组织样品的层析成象,OCT图象与传统组织学图谱能找到很好的对应关系;对动物脑梗塞模型组织的扫描成象,得到了脑梗塞侧和正常侧的OCT图象,实验中,大脑病变组织和正常组织能够被正确区分。  相似文献   

15.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

16.
Ryu SY  Choi HY  Na J  Choi ES  Lee BH 《Optics letters》2008,33(20):2347-2349
We report the development of an all-fiber multimodal system, based on a double-cladding fiber (DCF) and related devices, suitable for simultaneous measurements of optical coherence tomography (OCT) and fluorescence spectroscopy (FS). The DCF together with a DCF coupler and a single-body DCF lens has assisted in the realization of a multimodal but single-unit probe for the combined system. The DCF lens allowed simultaneous focusing of input beams for OCT and FS and also the effective collection of both signal beams from a sample. The DCF coupler could extract the OCT signal via the core channel and the FS signal through the cladding channel. The OCT image and the fluorescence spectra of a plant tissue were then simultaneously measured to validate the performance of the proposed multimodal system.  相似文献   

17.
We describe a novel technique for contrast enhancement in optical coherence tomography (OCT) that makes possible molecular-specific imaging for what is believed to be the first time. A pump-probe technique is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample-arm light acting as probe light. A signal processing technique for three-dimensional localization of the transient absorption signal is described, and preliminary results exhibiting OCT contrast from methylene blue dye in multilayer and scattering phantoms are presented.  相似文献   

18.
We applied high-temporal-resolution optical imaging utilizing both the fast intrinsic optical signal (fIOS) and voltage-sensitive dyes (VSDs) to observe the spatiotemporal characteristics of rat somatosensory cortex during electrical stimulation. We find that changes in both the fIOS and VSD signals occur rapidly (<30 ms) after the stimulus is applied, suggesting that both membrane depolarization and transmembrane ion movement occur shortly after the stimulus, preceding the more gradual physiological changes in oxygen consumption revealed by the slower component of the intrinsic optical signal. We find that the VSD signal spreads through a much larger area of cortex than the fIOS.  相似文献   

19.
Tang S  Zhou Y  Chan KK  Lai T 《Optics letters》2011,36(24):4800-4802
A multiscale multiphoton microscopy (MPM) and optical coherence tomography (OCT) system has been developed using a sub-10 fs Ti:sapphire laser. The system performs cross-sectional OCT imaging over millimeter field-of-view and en-face high-resolution MPM imaging with submicrometer resolution from the same sample location. With fish cornea, we have demonstrated cross-sectional imaging of cornea tissue layers using OCT, and the zoom-in imaging of cells and collagen fibers in each layer using MPM. The multiscale MPM/OCT system shows the potential of a rapid coarse scan to search for abnormal regions and the subsequent fine zoom-in imaging for diagnosis.  相似文献   

20.
基于希尔伯特-黄变换的近红外脑功能成像信号分析   总被引:1,自引:0,他引:1  
近红外光谱技术(Near-infrared spectroscopy,NIRS)已被广泛应用于无损大脑功能检测,然而传统时频分析方法并不适用于非稳态、非线性的血氧信号。在视觉刺激实验中,采集被试前额叶的血氧信号,分别比较了傅里叶谱分析法、小波谱分析法和希尔伯特黄变换(Hilbert-Huang transform,HHT)方法在近红外脑功能成像信号分析中应用的结果。实验表明基于希尔伯特黄变换的谱分析方法优于其它两种方法,并且使近红外光谱研究可以采用事件相关设计的实验,为形成近红外光谱信号分析的标准方法开辟了新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号