首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic excitation in high power density permanent magnet synchronous motors (PMSMs) due to eccentricity is a significant concern in industry; however, the treatment of lateral and torsional coupled vibrations caused by electromagnetic excitation is rarely addressed, yet it is very important for evaluating the stability of dynamic rotor vibrations. This study focuses on an analytical method for analyzing the stability of coupled lateral/torsional vibrations in rotor systems caused by electromagnetic excitation in a PMSM. An electromechanically coupled lateral/torsional dynamic model of a PMSM Jeffcott rotor is derived using a Lagrange–Maxwell approach. Equilibrium stability was analyzed using a linearized matrix of the equation describing the system. The stability criteria of coupled torsional–lateral motions are provided, and the influences of the electromagnetic and mechanical parameters on mechanical vibration stability and nonlinear behavior were investigated. These results provide better understanding of the nonlinear response of an eccentric PMSM rotor system and are beneficial for controlling and diagnosing eccentricity.  相似文献   

2.
We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.  相似文献   

3.
对包含不同类型裂纹(横裂纹、横-斜裂纹以及任意斜裂纹)的转子的耦合振动进行研究,以揭示裂纹转子在不同方向上刚度参数的变化规律及其交叉耦合机理,特别是由此引发的振动特征. 对于包含不同类型裂纹的转子轴段,采用六自由度Timoshenko梁单元模型对其进行单元建模,并基于应变能理论推导计算柔度参数和刚度矩阵. 在此基础上, 采用纽马克-$\beta$数值算法求解裂纹转子的运动方程,获得裂纹转子在单故障或多故障激励(不平衡激励、扭转激励或不平衡激励加扭转激励)作用下的耦合振动响应,进而分析耦合振动谱特征. 与横裂纹和横-斜裂纹相比,任意斜裂纹使转子刚度矩阵的交叉耦合效应更显著,导致转子发生更强烈的弯-扭耦合甚至是纵-弯-扭耦合振动.无论是在不平衡激励还是扭转激励作用下, 弯曲振动与扭转振动幅度都更大. 而且,包含不同类型裂纹的转子的耦合振动特征频率,例如旋转基频与二倍频、扭转激励频率及其边带成分的幅值,对裂纹面方向角具有不同的敏感性. 所得的这些研究结果,可以为转子裂纹的特征参数辨识与诊断提供理论依据.   相似文献   

4.
The use of non-linear energy sink to passively control vibrations of a non-linear main structure under the effect of bi-frequency harmonic excitation is addressed here. The excitation is assumed to induce both 1:1 and 1:3 resonance, and the response of the system is studied after using the Multiple Scale/Harmonic Balance Method, applied to obtain amplitude modulation equations in the slow time scale. The efficiency of the non-linear energy sink to reduce or suppress vibrations of the main structure is finally discussed.  相似文献   

5.
The behavior of a light spherical body in a rotating horizontal cylindrical cavity filled with a low-viscosity fluid is experimentally investigated both in the absence and in the presence of transverse vibrations. The system is in a centrifuged state. Mean rotation of the sphere relative to the cavity is found to exist. In the absence of the vibrations slow lagging rotation of the body is due to the gravity field. With increase in the cavity rotation velocity the intensity of differential rotation reduces. The vibrations lead to the excitation of differential rotation of the body, either anticipating or lagging, due to the resonance excitation of its inertial oscillations. The differential rotation of the body leads to the formation of the cylindrical Taylor-Proudman column. With increase in the column rotation velocity the instability of its boundary manifests itself as an azimuthal two-dimensional wave.  相似文献   

6.
斜拉桥中拉索承受着多种端部激励,可激发大幅空间振动.以斜拉索为对象,探究不同端部激励间相位差对其非线性振动的影响.首先,推导斜拉索无量纲离散控制方程,引入考虑相位的三向端部激励得到一般化模型;然后,针对拉索下端存在的纵桥向、竖向和横桥向激励的两两组合,受大幅或小幅激励,及其在主共振区或主参数共振区几组因素,共计12种工况,采用数值分析法分别研究了各工况下不同激励相位差时的斜拉索稳态响应.研究发现:激励相位差能加剧与激励频率相近的面内、外模态振动;在任意端部激励组合下,激励相位差不仅可使斜拉索非线性振动出现定量变化,还可改变内共振的表现形式.面内、外激励组合下,相位差对拉索响应幅值的影响以π为周期变化,且当相位差趋于π/2 + kπ (k = 0, 1, 2…)时影响最为突出;而面内激励组合下,以2π为变化周期,当相位差为π + 2kπ (k = 0, 1, 2, …)时其对稳态幅值的影响最显著.其原因是:面外激励关于拉索所在的竖直面对称,故其本质上以π为周期;而面内激励无此对称性,仍以2π为周期.因此,有无面外激励参与决定了激励间相位差对斜拉索响应的影响规律.  相似文献   

7.
We investigate the effect of a fast vertical parametric excitation on self-excited vibrations in a delayed van der Pol oscillator. We use the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic in the vicinity of the trivial equilibrium. Then, we apply the multiple scales method on this slow dynamic to derive a second-order slow flow system describing the modulation of slow dynamic. In particular we analyze the slow flow to obtain the effect of a fast excitation on the regions in parameter space where self-excited vibrations can be eliminated. We have shown that in the case where the time delay and the feedback gains are imposed, fast vertical parametric excitation can be an alternative to suppress undesirable self-excited vibrations in a delayed van der Pol oscillator.  相似文献   

8.
This contribution deals with the quenching of self-excited vibrations by means of parametric excitation due to periodic variation of spring stiffness. A three-mass chain system is investigated in detail. It is shown that the self-excitation can be fully or partly suppressed in a particular frequency interval.  相似文献   

9.
Characteristic non-linear effects can be observed, when piezoceramics are excited using weak electric fields. In experiments with longitudinal vibrations of piezoceramic rods, the behavior of a softening Duffing-oscillator including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage is observed. Another phenomenon is the decrease of normalized amplitude responses with increasing excitation voltages. For such small stresses and weak electric fields as applied in the experiments, piezoceramics are usually described by linear constitutive equations around an operating point in the butterfly hysteresis curve. The non-linear effects under consideration were, e.g. observed and described by Beige and Schmidt [1,2], who investigated longitudinal plate vibrations using the piezoelectric 31-effect. They modeled these non-linearities using higher order quadratic and cubic elastic and electric terms. Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relation between excitation voltage and vibration amplitude were also observed e.g. by von Wagner et al. [3] in piezo-beam systems. In the present paper, the work is extended to longitudinal vibrations of non-slender piezoceramic rods using the piezoelectric 33-effect. The non-linearities are modeled using an extended electric enthalpy density including non-linear quadratic and cubic elastic terms, coupling terms and electric terms. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. An extended kinetic energy taking into consideration the transverse velocity is used to model the non-slender rods. The equations of motion are solved using perturbation techniques. In a second step, additional dissipative linear and non-linear terms are used in the model. The non-linear effects described in this paper may have strong influence on the relation between excitation voltage and response amplitude whenever piezoceramic actuators and structures are excited at resonance.  相似文献   

10.
Based on the author’s previously published results for transversal free vibrations of axially moving sandwich belts described by coupled partial differential equations, which are derived and analytically solved, this paper contains new analytical results, for forced vibrations of the same system excited by transversal external excitation. The transversal forced vibrations of the axially moving sandwich belts are described by the coupled partial nonhomogeneous differential equations. The partial differential equations are analytically solved. Bernoulli’s method of particular integrals and Lagrange’s method of the variations of the constants are used.  相似文献   

11.
Fuzzy-logic control of parametrically excited impacting flexible system   总被引:2,自引:0,他引:2  
Summary In this article, the control of a repetitive impacting elastic link with parametrically excited base in rotational motion is considered. A fuzzy-logic controller is designed and employed to suppress the vibrations resulting after the impact with an external rigid body. The momentum balance method and an empirical coefficient of restitution is used in the collision of the two bodies. The controller is applied successfully to reduce the vibrations of the parametrically excited impacting flexible system. Simulations for several combinations of excitation and rotation parameters are provided. Received 21 April 1997; accepted for publication 12 September 1997  相似文献   

12.
In this study, a slightly curved Euler Bernoulli beam carrying a concentrated mass was handled. The beam was resting on an elastic foundation and simply supported at both ends. Effects of the concentrated mass on nonlin- ear vibrations were investigated. Sinusoidal and parabolic type functions were used as curvature functions. Equations of motion have cubic nonlinearities because of elongations during vibrations. Damping and harmonic excitation terms were added to the equations of motion. Method of mul- tiple scales, a perturbation technique, was used for solving integro-differential equation analytically. Natural frequen- cies were calculated exactly for different mass ratios, mass locations, curvature functions, and linear elastic foundation coefficients. Amplitude-phase modulation equations were found by considering primary resonance case. Effects of nonlinear terms on natural frequencies were calculated. Frequency-amplitude and frequency-response graphs were plotted. Finally effects of concentrated mass and chosen curvature function on nonlinear vibrations were investigated.  相似文献   

13.
This study is concerned with free and forced undamped purely nonlinear oscillators. First, the exact closed-form solution for free vibrations given in terms of the Ateb function is discussed. An insight is provided with respect to the period of vibrations and the harmonic content of the response. Then, forced purely nonlinear oscillators with an Ateb-type external excitation are considered. The exact solution for the forced response is obtained, the amplitude-frequency equation derived and frequency-response curves investigated. It is also shown how one can adjust the system parameters to cause a constant frequency/period of the forced response.  相似文献   

14.
Schröders  Simon  Fidlin  Alexander 《Nonlinear dynamics》2021,103(3):2315-2327
Nonlinear Dynamics - Pressure vibrations in hydraulic systems are a widespread problem and can be caused by external excitation or self-exciting mechanisms. Although vibrations cannot be completely...  相似文献   

15.
In this paper two different visco-elastic suspensions active system with pneumatic cylinder, and semi-active system with piezoceramics, are presented. The active suspension controls the vibration in medium-amplitude range and low frequency excitation. The semi-active suppression system controls the vibration in the audio frequency range and small amplitudes. The main aim of proposed solutions is to decrease the amplitude of vibration in resonance of conventional, passive suspensions. Both systems are worked out, especially for the better protection of the human body against harmful sounds and vibrations.  相似文献   

16.
This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equations, which describe corresponding dynamical free and forced processes, are obtained using Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one-mode vibrations correspond to two-frequency regime for free vibrations induced by initial conditions and to three-frequency regime for forced vibrations induced by one-frequency external excitation and corresponding initial conditions. The analytical solutions show that the elastic connection between plates leads to the appearance of two-frequency regime of time function, which corresponds to one eigenamplitude function of one mode, and also that the time functions of different vibration modes are uncoupled, for each shape of vibrations. It has been proven that for both elastically connected plates, for every pair of m and n, two possibilities for appearance of the resonance dynamical states, as well as for appearance of the dynamical absorption, are present. Using the MathCad program, the corresponding visualizations of the characteristic forms of the plate middle surfaces through time are presented.The English text was polished by Keren Wang.  相似文献   

17.
The critical excitation of a dynamical system is defined as the excitation that drives the system from one state to another with minimum energy. It plays an important role in both deterministic and stochastic problems of vibrations. For linear-elastic systems it can be directly obtained by calculus of variation, but the approach is not applicable to general non-linear-hysteretic systems. For single-degree-of-freedom (SDOF) elasto-plastic systems, the critical excitation has been found recently using a time-domain parameterization scheme, which also suggested the existence of ‘sub-critical excitations’ stemming from the local optima of the associated optimization problem. This paper presents a study of the sub-critical excitations based on the theoretical background laid out in the previous work. The sub-critical excitations are investigated in terms of their time-domain characteristics, energy, abundance and distribution. It is found that sub-critical excitations exist in abundance and their number grows in a combinatorial manner with the target duration. When mapped on a polar plot relative to the critical excitation, their distribution exhibits structures of progressively fine scale as the target duration increases.  相似文献   

18.
The vibrations of a vessel strongly influence the behavior of the interface of the fluids in it. Thus, vertical vibrations can lead both to the parametric excitation of waves (Faraday ripples) and to the suppression of the Rayleigh-Taylor instability [1–2]. At the present time, the influence of vertical vibrations on the behavior of a fluid surface have been studied in sufficient detail (see, for example, review [3]). The behavior of an interface of fluids in the case of horizontal vibrations has been studied less. An interesting phenomenon has been revealed in the experimental papers [4, 5]: in the case of fairly strong horizontal vibrations of a vessel containing a fluid with a free surface, the fluid collects near one of the vertical vessel walls, the free surface being practically plane and stationary with respect to the vessel, while its angle of inclination to the horizon depends on the vibration rate. But if there is a system of immiscible fluids with comparable but different densities in the vessel, horizontal vibrations lead to the formation of a steady wave relief at the interface. An explanation of the behavior of a fluid with a free boundary was given in [6] on the basis of averaged equations of fluid motion in a vibrational field. The present paper is devoted to an analysis of the behavior of the interface of fluids with comparable densities in a high-frequency vibrational field. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 8–13, November–December, 1986.  相似文献   

19.
Bolted joint structures are prone to bolt loosening under environmental and operational vibrations, which may severely affect the structural integrity. This paper presents a bolt looseness recognition method based on the subharmonic resonance analysis. The bolted joint structure was simplified to a two-degree-of-freedom nonlinear model, and a multiple timescale method was used to explain the phenomenon of the subharmonic resonance and conditions for the generation of subharmonics. Numerical simulation predictions for the generation of the subharmonics and conditions for the subharmonics can be found with respect to the excitation frequency and the excitation amplitude. Experiments were performed on a bolt-joint aluminum beam, where the damage was simulated by loosening the bolts. Two surface-bonded piezoelectric transducers were utilized to generate continuous sinusoidal excitation and to receive corresponding sensing signals. The experimental results demonstrated that subharmonic components would appear in the response spectrum when the bolted structure was subjected to the excitation of twice its natural frequency. This subharmonic resonance method was found to be effective on bolt looseness detection.  相似文献   

20.
Dynamic behaviour of a beam, subjected to stationary random excitation, has been investigated for the situation in which the response is different from the model of a Gaussian random process. The study was restricted to the case of symmetric non-Gaussian probability density functions of beam vibrations. There are two possible causes of deviations of the system response from the Gaussian model: the first, nonlinear behaviour, concerns the system itself and the second is external when the excitation is not Gaussian. Both cases have been considered in the paper. To clarity the conclusions for each case and to avoid interference of these different types of system behaviour, two beam structures, clamped-clamped and cantilevered, have been studied. A numerical procedure for prediction of the nonlinear random response of a clamped-clamped beam under the Gaussian excitations was based on a linear modal expansion. Monte Carlo simulation was undertaken using Runge–Kutta integration of the generalised coordinate equations. Probability density functions of the beam response were analysed and approximated making use of different theoretical models. An experimental study has been carried out for a linear system of a cantilevered beam with a point mass at the free end. A pseudo-random driving signal was generated digitally in the form of a Fourier expansion and fed to a shaker input. To generate a non-Gaussian excitation a special procedure of harmonic phase adjustment was implemented instead of the random choice. In so doing, the non-Gaussian kurtosis parameter of the beam response was controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号