首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oil-in-water emulsions based on 10% milk protein preparation, 0.3% mono-di-glycerides (MDG) and 8% vegetable oil were prepared for models typifying ice cream formulations. Two MDG (saturated and partially unsaturated) and four fats (oleic oil, hydrogenated and refined coconut oils, refined palm oil) were chosen to investigate the interactions occurring between the oil phase, the MDG and the milk proteins. Influence of temperature (4 °C) and ageing (24 h at 4 °C) was also tested. The emulsions were characterized for protein desorption, particle size distribution and rheological properties. The dynamic surface activity of the milk proteins and the MDG at the oil-water interface was also determined. At 20 °C, emulsions were mostly stabilized by proteins although the protein load at the globule surface strongly depended on the emulsifier and the oil phase natures. A displacement of the proteins adsorbed at the oil droplet interface by the lipid surfactant was a consequence of the temperature decrease and/or ageing step, suggesting a disruption of the interfacial protein interactions. This disruption was more or less marked depending on the physicochemical characteristics of the surfactant and the oil used (amount of crystallized matter, fatty acid chain length and unsaturation degree). In parallel, the variation of the apparent viscosity of the various emulsions upon temperature was well correlated with the solid fat content. On the whole, the results obtained suggested that not only the surfactant molecules, i.e. emulsifiers and proteins, but also the fat used in the emulsion formulation participated in the development of the interface characteristics and rheological properties.  相似文献   

2.
The quantification of proteins adsorbed at the oil-in-water interface is often difficult since it requires separation of fat globules from the aqueous phase that may damage the fat globule size and/or modify the interfacial composition. Front-face fluorescence spectroscopy was used to characterize the protein partitioning between the aqueous and oil phases of emulsions without separating these two phases. Different emulsions based on skim milk powder (SMP), two mono- and di-glyceride (MDG) mixtures (saturated and partially unsaturated), and three fats (hydrogenated and refined coconut oils and refined palm oil) were studied. The impact of an ageing period (24 h at 4 °C) was also investigated to typify the first step of ice cream processing. The emulsions were characterized for protein partitioning, immediately following emulsification and after ageing, using the Bradford spectrophotometric method, applied to the aqueous phase recovered after emulsion centrifugation. In parallel, the emulsions were characterized by their tryptophan emission fluorescence spectra. The area of the peaks at 333 nm, of the fourth-derivative fluorescence spectra corresponding to the amount of proteins present in the aqueous phase of emulsions, was well correlated with the Bradford measurements (r2 = 0.91). This amount was also calculated from the fluorescence calibration curve obtained with SMP in solution. In conclusion, front-face fluorescence spectroscopy appeared to be a powerful and simple technique allowing the quantification of different populations of protein in an emulsified system, i.e., in the aqueous phase and loaded at the fat globule interface.  相似文献   

3.
The aim of the study was to perform modification of fats to obtain new products, which were used as a fatty basis of model emulsions. The second objective was to assess the stability of the prepared emulsions. For this purpose, turkey fat, chicken fat, and mutton tallow were used and enzymatically inter-esterified with hemp oil. Enzymatic interesterification was performed using a selective catalyst – Lipozyme IR RM. The obtained fat mixtures before and after interesterification were assessed by determining their acid value, peroxide value (PV), anisidine value (AV), polar fraction (PF), and slip melting point (SMP). Later, the fats were used as a fatty basis of emulsions. The variable component in the emulsions was the emulsifier. The emulsions were evaluated for droplet size and viscosity and by the Turbiscan test. It was concluded that the dispersion systems containing mutton tallow and the emulsifier formed during the enzymatic reaction, as well as the one containing the same fat and lecithin, showed the best stability. In the case of emulsions with enzymatically modified mutton tallow, the authors are planning to extend the range of usable properties under examination. In the authors’ opinion, the proposed systems can be used in the cosmetic and food industries.  相似文献   

4.
Various milk protein mixtures were used to manufacture complex emulsions differing by their total protein concentration (1, 2.25 and 3.5%) and by their weight proportion of casein (from 0 to 75%) or whey proteins (WP) (containing from 10 to 80% β-lactoglobulin). Beside those changes in protein concentration and composition, impact of milk protein heat treatment, which was applied before emulsification, was also investigated. The resulting structuration effects on the corresponding emulsions were determined through changes in the particle size distribution and in the amount of adsorbed protein at the fat globule surface. Furthermore, fat destabilisation under a whipping and freezing steps was underlined as functions of the processing parameters (protein concentration and composition, and application or not of an additional heat treatment), and it was discussed in terms of the resulting amount of displaced protein from the oil–water interface.  相似文献   

5.
Emulsions prepared with whey proteins, phospholipids and 10% of vegetable oil were used for a model typifying dressings, coffee whitener and balanced diets. For the present study, two whey proteins (partial heat-denatured whey protein concentrate (WPC) and undenatured whey protein isolate (WPI)) in combination with different phospholipids (hydrolysed and unmodified deoiled lecithin) were chosen to investigate the interactions between proteins, phospholipids and salt (sodium chloride) in such emulsion systems. Oil-in-water (o/w) emulsions (10 wt.% sunflower oil) containing various concentrations of commercial whey proteins (1-2%), phospholipids (0.39-0.78%) and salt (0.5-1.5%) were prepared using a laboratory high pressure homogeniser under various preparation conditions. Each emulsion was characterised by droplet size, creaming rate, flow behaviour and protein load. The dynamic surface activity of the whey proteins and lecithins at the oil-water interface was determined using the drop volume method. The properties of emulsions were significantly influenced by the content of whey protein. Higher protein levels improved the emulsion behaviour (smaller oil droplets and increased stability) independent of the protein or lecithin samples used. An increase of the protein content resulted in a lower tendency for oil droplet aggregation of emulsions with WPC to occur and emulsions tending towards a Newtonian flow behaviour. The emulsification temperature was especially important using the partial heat-denatured WPC in combination with the deoiled lecithin. A higher emulsification temperature (60 degrees C) promoted oil droplet aggregation, as well as an increased emulsion consistency. Emulsions with the WPC were significantly influenced by the NaCl content, as well as the protein-salt ratio. Increasing the NaCl content led to an increase of the droplet size, higher oil droplet aggregation, as well as to a higher creaming rate of the emulsions. An increase of the lecithin content from 0.39 to 0.78% in the emulsion system resulted in a small reduction of the single droplet size. This effect was more pronounced when using the hydrolysed lecithins.  相似文献   

6.
Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to withstand the forces involved in spreading. Heat treatment (90 °C) of emulsions made with whey protein concentrate (WPC) or skim milk powder reduced the spreadability, probably because polymerisation of whey protein at the oil/water interface increased the coherence of the protein layer. Heat treatment of emulsions made with WPC and monoglycerides did not reduce spreadability, presumably because the presence of the monoglycerides at the oil/water interface prevented a substantial increase of coherence of the protein layer. Heat treatment of caseinate-stabilised emulsions had no effect on the spreadability. If proteins were already present at the air/water interface, oil did not spread if the surface tension (γ) was <60 mN/m. We introduced a new method to measure the rate at which oil molecules spread from the oil globules in the emulsion droplet by monitoring changes in γ at various positions in a ‘trough’. The spreading rates observed for the various systems agree very well with the values predicted by the theory. Spreading from oil globules in a drop of emulsion was faster than spreading from a single oil drop, possibly due to the greater surface tension gradient between the oil globule and the air/water interface or to the increased oil surface area. Heat treatment of an emulsion made with WPC did not affect the spreading rate. The method was not suitable for measuring the spreading rate at interfaces where surface active material is already present, because changes in γ then were caused by compression of the interfacial layer rather than by the spreading oil.  相似文献   

7.
To investigate the emulsifying properties and adsorption behaviour of high molecular amphiphilic substances such as proteins, it is important to maintain the native status of the used samples. The new method of micro porous glass (MPG) emulsification could offer an opportunity to do this because of the low shear forces. The oil-in-water emulsions were produced by dispersing the hydrophobic phase (liquid butter fat or sunflower oil) through the MPG of different average pore diameters (dp=0.2 or 0.5 μm) into the flowing continuous phase containing the milk proteins (from reconstituted skim milk and buttermilk). The emulsions were characterised by particle size distribution, creaming behaviour and protein adsorption at the hydrophobic phase. The particle size distribution of protein-stabilised MPG emulsions is determined by the pore size of MPG, the velocity of continuous phase (or wall shear stress σw) and the transmembrane pressure. A high velocity of =2 m s−1 (σw=13.4 Pa) and low pressure (pressure of disperse phase slightly exceeded the critical pressure ΔpTM=4.5 bar of 0.2 μm-MPG) led to the smallest droplet diameter. As a consequence of average droplet diameters of d43>3.5 μm creaming was observed without centrifugation in all MPG emulsions after 24 h, but no coalescence of the oil droplets occurred. The study of protein adsorption showed that the MPG emulsification at low shear forces resulted in lower protein load values (2.5±0.5 mg m−2) than pressure emulsification (11.5±1.0 mg m−2). In addition, the various emulsification conditions (MPG or pressure homogenization) led to differences in the relative proportions of casein fractions, whey proteins and milk fat globule membranes (MFGM) at the fat globule surfaces.  相似文献   

8.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   

9.
单滴法;pluronics;卵磷脂;混合界面吸附膜;乳状液稳定性  相似文献   

10.
张源  梁启富  张小兵  刘峰 《应用化学》2012,29(1):106-112
以辛烯基琥珀酸淀粉钠和油酸甲酯分别为替代乳化剂和溶剂,采用浓缩乳化法制备了高度稳定的2.5%高效氯氟氰菊酯水乳剂,通过测定乳液油滴粒径分布,结合乳液外观研究了乳化方法、预处理液中辛烯基琥珀酸淀粉钠质量分数、转速和剪切时间等工艺条件对乳液稳定性的影响.研究结果表明,辛烯基琥珀酸淀粉钠对油酸甲酯具有较好乳化效果,以其为乳化剂可制备高度稳定的2.5%高效氯氟氰菊酯水乳剂,油滴平均粒径在1.2 μm左右,且加速试验[即(54±2)℃密封14 d]和常温储存6个月后平均粒径仅增长了0.1~0.3μm,外观无变化;采用浓缩乳化法且预处理液中辛烯基琥珀酸淀粉钠质量分数在15%~25%时乳液稳定性较好,提高转速可降低油滴平均粒径,但对乳液均一性无显著影响,延长剪切时间对油滴平均粒径影响不大,但有利于提高乳液均一性;辛烯基琥珀酸淀粉钠为乳化剂制备的高效氯氟氰菊酯水乳剂稳定性优于常规水乳剂.  相似文献   

11.
Spreading of partially crystallized oil droplets on an air/water interface   总被引:3,自引:0,他引:3  
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for β-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (ΠAW) at the point of spreading; ΠAW at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 °C, but not for those measured at 22 or 37 °C. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process.  相似文献   

12.
In this paper, we studied the interaction between human unstimulated saliva and lysozyme-stabilized oil-in-water emulsions (10 wt/wt% oil phase, 10 mM NaCl, pH 6.7), to reveal the driving force for flocculation of these emulsions. Confocal scanning laser microscopy (CSLM) showed formation of complexes between salivary proteins and lysozyme adsorbed at the oil-water interface and lysozyme in solution as well. To assess the electrostatic nature of the interaction in emulsion/saliva mixtures, laser-diffraction and rheological measurements were conducted in function of the ionic strength by adding NaCl to the mixture in the range between 0 and 168 mM. Increasing the ionic strength reduced the ability of saliva to induce emulsion flocculation as shown by the decreased floc size and the effect on the viscosity. Turbidity experiments with varying pH (3-7) and ionic strength also showed decreased complex formation in mixtures between saliva and lysozyme in solution upon NaCl addition up to 200 mM. Decreasing the pH increased the turbidity, in line with the increase of the positive net charge on the lysozyme molecule. We conclude that electrostatic attraction is the main driving force for complex formation between saliva components and lysozyme adsorbed at the oil droplets and in solution.  相似文献   

13.
The effects of the composition of a fat globule surface in reconstituted milks on the properties of rennet-induced coagulums were studied by rheological measurements and by front-face fluorescence spectroscopy in combination with a multivariate statistical method to investigate, at a molecular level, the evolution of the structure during the milk coagulation process. Reconstituted milks used in this study were prepared from different fat-in-water emulsions stabilized by whole skim-milk proteins, beta-casein, or beta-lactoglobulin. Coagulation of milk reconstituted with natural fat globules was also investigated. The study showed that the fat droplet/water interface influences the rheological properties (G' modulus) of the reconstituted milks during the coagulation process. The tryptophan fluorescence emission spectra of proteins were recorded during the kinetics of coagulation. The results of the principal component analysis performed on the spectral data showed a discrimination in the different systems investigated. It was shown that the fluorescence properties of protein tryptophans and, consequently, the structures of the protein networks were different for the investigated systems. The development of fluorescence transfer between protein tryptophans and fat-globule vitamin A during the coagulation kinetics agreed with the interactions between the protein network and fat globules. Copyright 2001 Academic Press.  相似文献   

14.
Understanding the factors that control protein structure and stability at the oil-water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. In this study, a combination of synchrotron radiation circular dichroism spectroscopy, front-face fluorescence spectroscopy, and dual polarization interferometry (DPI) was used to characterize the conformation and geometric structure of β-lactoglobulin (β-Lg) upon adsorption to two oil-water interfaces: a hexadecane-water interface and a tricaprylin-water interface. The results show that, upon adsorption to both oil-water interfaces, β-Lg went through a β-sheet to α-helix transition with a corresponding loss of its globular tertiary structure. The degree of conformational change was also a function of the oil phase polarity. The hexadecane oil induced a much higher degree of non-native α-helix compared to the tricaprylin oil. In contrast to the β-Lg conformation in solution, the non-native α-helical-rich conformation of β-Lg at the interface was resistant to further conformational change upon heating. DPI measurements suggest that β-Lg formed a thin dense layer at emulsion droplet surfaces. The effects of high temperature and the presence of salt on these β-Lg emulsions were then investigated by monitoring changes in the ζ-potential and particle size. In the absence of salt, high electrostatic repulsion meant β-Lg-stabilized emulsions were resistant to heating to 90 °C. Adding salt (120 mM NaCl) before or after heating led to emulsion flocculation due to the screening of the electrostatic repulsion between colloidal particles. This study has provided insight into the structural properties of proteins adsorbed at the oil-water interface and has implications in the formulation and production of emulsions stabilized by globular proteins.  相似文献   

15.
Adsorption of sodium dodecylbenzene sulfonate (NaDBS) on the surfaces of dispersed oil globules during homogenization of paraffin oil in water emulsions has been studied. NaDBS concentration was changed over a wide interval comprising critical micelle concentration. For the emulsions homogenized for different time intervals the total quantity and the percentage of NaDBS adsorbed, the amount and number of NaDBS molecules adsorbed per unit inter-facial area, as well as the specific surface area of dispersed phase and the area per emulsifier molecule have been determined.

The amount adsorbed and density of the emulsifier layer, I.e., the area per NaDBS molecule adsorbed on the oil globule surfaces, depend not only on Initial NaDBS concentration but also, on the homogenization time and the homogenization action. This makes a difference between the adsorption behaviour under the conditions of emulsion formation and its subsequent homogenization, and the adsorption behaviour of the emulsifier at a plane quiescent Interface.  相似文献   

16.
The stability and droplet size of protein and lipid stabilised emulsions of caraway essential oil as well as the amount of protein on the emulsion droplets have been investigated. The amount of added protein (beta-lactoglobulin) and lipid (phosphatidylcholine from soybean (sb-PC)) were varied and the results compared with those obtained with emulsions of a purified olive oil. In general, emulsions with triglyceride oil proved to be more stable compared with those made with caraway essential oil as the dispersed phase. However, the stability of the emulsions can be improved considerably by adding sb-PC. An increase in the protein concentration also promoted emulsion stability. We will also present how ellipsometry can be used to study the adsorption of the lipid from the oil and the protein from the aqueous phase at the oil-water interface. Independently of the used concentration, close to monolayer coverage of sb-PC was observed at the caraway oil-aqueous interface. On the other hand, at the olive oil-aqueous interface, the presence of only a small amount of sb-PC lead to an exponential increase of the layer thickness with time beyond monolayer coverage. The amounts of beta-lactoglobulin adsorbed at the caraway oil-aqueous interface and at the olive oil-aqueous interface were similar, corresponding roughly to a protein monolayer coverage.  相似文献   

17.
Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC).  相似文献   

18.
Effects of substituting native beta-lactoglobulin B (beta-lactoglobulin) with heat-treated beta-lactoglobulin as emulsifier in oil in water emulsions were investigated. The emulsions were prepared with a dispersed phase volume fraction of Phi=0.6, and accordingly, oil droplets rather closely packed. Native beta-lactoglobulin and beta-lactoglobulin heated at 69 degrees C for 30 and 45 min, respectively, in aqueous solution at pH 7.0 were compared. Molar mass determination of the species formed upon heating as well as measurements of surface hydrophobicity and adsorption to a planar air/water interface were made. The microstructure of the emulsions was characterized using confocal laser scanning microscopy, light scattering measurements of oil droplet sizes, and assessment of the amount of protein adsorbed to surfaces of oil droplets. Furthermore, oil droplet interactions in the emulsions were quantified rheologically by steady shear and small and large amplitude oscillatory shear measurements. Adsorption of heated and native beta-lactoglobulin to oil droplet surfaces was found to be rather similar while the rheological properties of the emulsions stabilized by heated beta-lactoglobulin and the emulsions stabilized by native beta-lactoglobulin were remarkably different. A 200-fold increase in the zero-shear viscosity and elastic modulus and a 10-fold increase in yield stress were observed when emulsions were stabilized by heat-modified beta-lactoglobulin instead of native beta-lactoglobulin. Aggregates with a radius of gyration in the range from 25 to 40 nm, formed by heating of beta-lactoglobulin, seem to increase oil droplet interactions. Small quantities of emulsifier substituted with aggregates have a major impact on the rheology of oil in water emulsions that consist of rather closely packed oil droplets.  相似文献   

19.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

20.
Fat encapsulation in spray-dried protein-stabilised emulsions is known to depend on the choice of protein, the emulsion droplet size, and the melting point of the fat. However, the fat encapsulation may also depend on the fat crystal habit. Fats may crystallise in three different forms , β′ and β, of which the β-form is thermodynamically stable. The -form is obtained in rapidly cooled fats, and it can then transform into the β′-form during storage, and this crystal form is finally transformed into the β-form. In order to investigate the effect of different fat phases on the spray-dried emulsions, two solid fats were studied: fully hardened rapeseed oil (β-stable) and fully hardened palm oil (β′-stable). The solid fats were used on their own or in mixtures with rapeseed oil, in order to provide fat phases with different properties. The emulsion composition was chosen as to mimic the composition of whole milk, i.e. 40% lactose, 30% sodium caseinate and 30% fat on a dry weight basis. The dried powders were stored under dry conditions at 4 or 37 °C in order to investigate the changes in the fat crystals and surface composition of the powders with time. The surface composition was analysed using electron spectroscopy for chemical analysis. Evaluation of the data showed that surface coverage of fat varied depending on the composition of the fat phase. The ratio of lactose to protein remained constant, which implies that the fat was present as ‘islands’ on a surface composed of lactose and protein. The hardened palm oil crystallised initially in the - or β′-form (depending on the ratio of hardened fat to oil), and during storage, the crystal form gradually changed into the β′-form. In powders containing hardened rapeseed oil only the stable β-form was found, even in fresh samples. The surface coverage of fat was reduced after storage, whereas the ratio of lactose to protein at the surface remained unchanged. The emulsion droplet size in emulsions prepared at a low homogenisation pressure was considerably increased after spray-drying and reconstitution, whilst the emulsion droplet size was well preserved in emulsions prepared at high homogenisation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号