首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The significance of sparse long-chain branching in polyolefines towards mechanical properties is well-known. Topology is a very important structural property of polyethylene, as is molecular weight distribution. The method of Fourier-transform rheology (FTR) and melt state nuclear magnetic resonance (NMR) is applied for the detection and quantification of branching topology (number of branches per molecule), for industrial polyethylenes of various molecular weight and molecular weight distributions. FT rheology consists of studying the development of higher harmonics contribution of the stress response to a large amplitude oscillatory shear deformation. In particular, when applying large-amplitude oscillatory shear (LAOS), one observes the development of mechanical higher harmonic contributions at 3ω 1, 5ω 1,..., in the shear stress response. We correlate the relative intensity, I 3/1, and phase Φ 3 of these harmonics with structural properties of industrial polyethylene, i.e. polymer topology and molecular weight distribution. Experiments are complemented by numerical simulations, using a multimode differential Pom-pom constitutive model (DCPP formulation), by fitting to the experimental linear and nonlinear viscoelastic behaviours. Simulation results in the nonlinear regime are correlated with molecular properties of the “pom-pom” macromolecular architecture. Qualitative agreement is found between predicted and experimental FT rheology results.  相似文献   

2.
Linear and branched poly(butyleneisophthalate) samples were synthesized and characterized in terms of the intrinsic viscosity, the molecular weight and the melt viscosity over a wide range of shear rates at 200 °C. An exponent of about 4.6 in the equation relating 0 to was found for linear samples; this high value is probably due to the high content of cyclic oligomers in low molecular weight samples. Both linear and branched samples exhibited Newtonian behaviour over a rather wide range of shear rates, but for any given melt-viscosity, the branched samples became shear thinning at lower shear rates than the linear ones. Our experimental data were found to fit a previously proposed correlation between the melt viscosity ratio ( 0, b / 0, 1 ) and a branching index quite well.  相似文献   

3.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

4.
Melt rheology of long-chain-branched polypropylenes   总被引:2,自引:0,他引:2  
Rheological properties of long-chain-branched isotactic polypropylene (PP) via copolymerization with a very small amount of nonconjugated α,ω-diene monomer using metallocene catalyst system in both linear and nonlinear regions were investigated, comparing with conventional linear and long-chain-branched PP modified at postreactor. Although comonomer incorporation was equal to 0.05 mol% or less, it caused high molecular weight, broad molecular weight distribution, and long-chain branching. A detailed study on the effect of diene incorporation on the polymer properties was conducted, comparing with modified PP in postreactor. Polymer chain microstructures were characterized by gel permeation chromatography with multiangle laser light scattering (MALLS), differential scanning calorimetry, and rheological means: dynamic viscoelasticity, step-strain, uniaxial elongational flow measurements, and large amplitude oscillatory shear. The PP, which incorporated a small amount of diene monomer, showed significantly improved viscoelastic behaviors. The diene-propylene copolymer containing long-chain branches showed extremely long relaxation mode under shear and outstanding viscosity increase under elongational flow, so-called strain hardening. The difference in microstructure of diene-propylene copolymer with modified PP with long-chain branches is investigated by MALLS and rheological characterizations.  相似文献   

5.
Effect of large shear on an asymmetric block copolymer with nanospherical domains has been studied using rheology and small angle X-ray scattering. The material investigated was a triblock copolymer poly[styrene-b-(ethylene-co-butylene)-b-styrene] swollen in a midblock-selective solvent. When cooled below the order–disorder transition temperature (T ODT), the system forms a locally ordered structure of grains with body-centered cubic (BCC) lattice. Isothermal shearing, either at constant rate or with large amplitude oscillatory shear (LAOS) at low frequencies and strain amplitude greater than or equal to 2.0, leads to the destruction of the BCC lattice (isothermal “shear melting”). Upon cessation of the shear, the BCC structure recovers with kinetics similar to the one after thermal quench from above T ODT. Under certain experimental conditions, LAOS leads to alignment of the BCC lattice. The lattice orientation depends primarily on shearing frequency. At low frequencies, there exists an upper and lower bound on strain amplitude where monodomain textures can be obtained. Upon alignment, the modulus drops by about 30% of that of the polycrystalline structure. Measurement of rheological properties offers an indirect method for distinguishing between polycrystalline structure (grains) and monodomain texture.  相似文献   

6.
In order to investigate the global polymer chain motion under large amplitude oscillatory shear (LAOS), the dielectric properties under LAOS are measured by a new rheo-dielectric combination. The design of the rheo-dielectric setup including a new fixture and modified oven is explained in detail. For 1,4-cis-polyisoprene, having type-A dipoles parallel to the backbone, the dielectric dipoles can detect the global polymer chain motion via the end-to-end vector. Thus rheological and dielectric (rheo-dielectric) properties reflect the dynamics of the polymer chain motion under LAOS. In this study, we investigate the rheo-dielectric properties under LAOS with 1,4-cis-polyisoprene as model component. As the strain amplitude was increased under LAOS, the relaxation strength from dielectric properties decreased for the whole spectra without changing the shape of the dielectric spectra. These results are analyzed on the basis of the molecular model of dynamic tube dilation (DTD) induced by the convective constraint release (CCR). It is found that the global chain motion under LAOS flow is affected by both rheological frequency and strain amplitude. It is also observed that segmental motion is affected via the oscillatory frequency under LAOS. This result differs from experiments under steady shear.  相似文献   

7.
Several poly(butyleneisophthalate)s of different molecular weight, both linear and randomly branched, were synthetized by bulk polymerization and studied in the molten state with a capillary rheometer in the temperature range 190–220°C. The viscosity shift factors showed to be well correlated to temperature by an Arrhenius-type equation. The melt-flow activation energy at constant shear stressE was found to be 15±1 kcal/mol for both linear and branched samples, whereas for polydisperse poly(butyleneterephthalate) and poly(ethyleneterephthalate) it was found previously that random long-chain branching substantially increases the activation energy.An analysis of our results and of those available in the literature shows that the influence of branches on the temperature coefficient of viscosity of polymers is still a subject open to discussion.  相似文献   

8.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

9.
To probe the behaviour of fibrillar assemblies of ovalbumin under oscillatory shear, close to the percolation concentration, cp (7.5%), rheo-optical measurements and Fourier transform rheology were performed. Different results were found close to cp (7.3%), compared to slightly further away from cp (6.9 and 7.1%). For 6.9 and 7.1%, a decrease in complex viscosity, and a linear increase in birefringence, n, with increasing strain was observed, indicating deformation and orientation of the fibril clusters. For 7.3%, a decrease in complex viscosity was followed by an increase in complex viscosity with increasing strain, which coincided with a strong increase in n, dichroism, n, and the intensity of the normalized third harmonic (I3/I1). This regime was followed by a second decrease in complex viscosity, where n,n and I3/I1 decreased. In the first regime where the viscosity was decreasing with increasing strain, deformation and orientation of existing clusters takes place. At higher oscillatory shear, a larger deformation occurs and larger structures are formed, which is most likely aggregation of the clusters. Finally, at even higher strains, the clusters break up again. An increase in complex viscosity, n, n and I3/I1 was observed when a second strain sweep was performed 30 min after the first. This indicates that the shear-induced cluster formation and break up are not completely reversible, and the initial cluster size distribution is not recovered after cessation of flow.  相似文献   

10.
Fourier transform rheology is a very sensitive technique to characterize non-linear rheological fluid properties. It has been applied here for the first time to polymer dispersions in water and the results are compared to those from conventional rheology, namely steady and small amplitude oscillatory shear experiments. The investigated systems are mainly based on styrene and n-butylacrylate. A first attempt was made to evaluate how far colloidal parameters like particle volume fraction and ionic strength as well as chemical composition and surface characteristics of the dispersed particles are reflected in FT-rheology spectra. Significantly different non-linearities are observed for highly concentrated dispersions of particles with different Tg. These differences are not detected in linear oscillatory shear and show up in steady shear only at significantly higher shear rates. Particle surface characteristics influence the non-linear response in oscillatory shear significantly and the intensity of the overtones is found to be higher for a dispersion of particles with a “hairy” swollen surface layer as compared to a system of smooth particles, although the solids content was adjusted to match the steady shear viscosity. The intensity of the overtones in FT-rheology strongly decrease upon dilution. At a solid content below 35% no differences are observed in the FT-experiments for the systems investigated here, whereas the differences in steady shear are very pronounced in this concentration range. A significant influence of added salt onto the non-linear response is detected for some systems, which might be correlated to the stability of these systems. The observed phenomena certainly cannot be explained in terms of constitutive equations or microstructural statistical mechanical models at present. Thus, FT-rheology yields information complementary to classical steady or linear oscillatory shear experiments. Received: 11 December 2000 Accepted: 8 April 2001  相似文献   

11.
This work investigates the linear and non-linear viscoelastic melt rheology of four grades of polycarbonate melt compounded with 3 wt% Nanocyl NC7000 multi-walled carbon nanotubes and of the matching matrix polymers. Amplitude sweeps reveal an earlier onset of non-linearity and a strain overshoot in the nanocomposites. Mastercurves are constructed from isothermal frequency sweeps using vertical and horizontal shifting. Although all nanocomposites exhibit a second plateau at ~105 Pa, the relaxation times estimated from the peak in loss tangent are not statistically different from those of pure melts estimated from cross-over frequencies: all relaxation timescales scale with molar mass in the same way, evidence that the relaxation of the polymer network is the dominant mechanism in both filled and unfilled materials. Non-linear rheology is also measured in large amplitude oscillatory shear. A comparison of the responses from frequency and amplitude sweep experiments reveals the importance of strain and temperature history on the response of such nanocomposites.  相似文献   

12.
The validation of time-temperature superposition of non-linear parameters obtained from large amplitude oscillatory shear is investigated for a model viscoelastic fluid. Oscillatory time sweeps were performed on a 11?wt.% solution of high molecular weight polyisobutylene in pristane as a function of temperature and frequency and for a broad range of strain amplitudes varying from the linear to the highly non-linear regime. Lissajous curves show that this reference material displays strong non-linear behaviour when the strain amplitude is exceeding a critical value. Elastic and viscous Chebyshev coefficients and alternative non-linear parameters were obtained based on the framework of Ewoldt et al. (J Rheol 52(6):1427?C1458, 2008) as a function of temperature, frequency and strain amplitude. For each strain amplitude, temperature shift factors a T (T) were calculated for the first order elastic and viscous Chebyshev coefficients simultaneously, so that master curves at a certain reference temperature T ref were obtained. It is shown that the expected independency of these shift factors on strain amplitude holds even in the non-linear regime. The shift factors a T (T) can be used to also superpose the higher order elastic and viscous Chebyshev coefficients and the alternative moduli and viscosities onto master curves. It was shown that the Rutgers-Delaware rule also holds for a viscoelastic solution at large strain amplitudes.  相似文献   

13.
This is a study on anisotropy of seismic attenuation in a transversely isotropic (TI) model, which is a long-wavelength equivalent of an isotropic medium with embedded parallel fractures. The model is based on Schoenberg’s linear-slip theory. Attenuation is introduced by means of a complex-valued stiffness matrix, which includes complex-valued normal and tangential weaknesses. To study the peculiarities of seismic attenuation versus wave-propagation direction in TI media, numerical modeling was performed. The model-input data were the complex-valued weaknesses found from the laboratory ultrasonic experiment made with a Plexiglas plate-stack model, oil-saturated (wet) and air-filled (dry). The laboratory experiment and the numerical modeling have shown that in the vicinity of the symmetry axis, in the wet model, P-wave attenuation is close to S-wave attenuation, while in the dry model, P-wave attenuation is much greater than S-wave attenuation. Moreover, the fluid fill affects the P-wave attenuation pattern. In the dry (air-saturated) model, the attenuation pattern in the vicinity of the symmetry axis exhibits steeper slope and curvature than in the wet (oil-saturated) model. To define the slope or the curvature, a QVO gradient was introduced, which was found to be proportional to the symmetry-axis Q S/Q P-ratio, which explains the differences between dry and wet models. Thus, depending on the Q S/Q P-ratio, the QVO gradient can serve as an indicator of the type of fluid in fractures, because the QVO gradient is greater in gas-saturated than in liquid-saturated rocks. The analysis of P-wave attenuation anisotropy in seismic reflection and vertical seismic profiling data can be useful in seismic exploration for distinguishing gas from water in fractures.  相似文献   

14.
Rheological characterizations were carried out for two polystyrenes. One was a linear polymer with M w =222,000 g/mol and M w /M n =2, while the other was a randomly branched polystyrene with M w =678,000 g/mol and a broad molecular weight distribution. Experiments performed included oscillatory shear to determine the storage and loss moduli as functions of frequency and temperature, viscosity as a function of shear rate and pressure, and multi-angle light scattering to determine the radius of gyration as a function of molecular weight. The presence of branching in one sample was clearly revealed by the radius of gyration and the low-frequency portion of the complex viscosity curve. Data are also shown for three polyethylene copolymers, one (LLDPE) made using a Ziegler catalyst and two made using metallocene catalysts, one (BmPE) with and one (LmPE) without long-chain branching (LCB). While the distribution of comonomer is known to be much more uniform in LmPE than in LLDPE, the pressure shift factors were the same for these two polymers. The pressure and temperature shift factors of the two polystyrenes were identical, but, in the case of polyethylene, the presence of a small amount of LCB in the BmPE had a definite effect on the shift factors. These observations are discussed in terms of the relative roles of free volume and thermal activation in the effects of temperature and pressure.  相似文献   

15.
Rheological techniques, size-exclusion chromatography, and molecular spectroscopy are the most widely used tools for describing polymer molecular structure in polyolefins. The detection of long-chain branching, and to some extent, its quantification, have been based on quantifying the deviation of polyethylene??s (PE) rheological behavior from that of a linear reference. Although metallocene-based PE has been extensively studied, linear polydisperse originating from Ziegler or Chromium-based catalysts are not often thoroughly considered, despite their high industrial importance. Within this work, we study the linear and non-linear rheology of a set of polydisperse PEs, for which the topological linearity is confirmed by GPC-MALLS measurements. Thus, we can safely quantify the effect of broad molecular weight distribution, high and ultra-high molecular weight fractions on rheological quantities and model parameters. Specifically, the zero-shear viscosity, ?? 0 vs. M w, relaxation spectra, phase lag vs. the complex modulus plot (van Gurp?CPalmen method) were applied and significant deviations from the ??rheologically linear?? behavior were observed, attributed only to M w, M z and polydispersity. Since the elongational viscosity was typical of linear PE, large-amplitude oscillatory shear and FT-Rheology were applied to quantify the non-linear rheological behavior. The latter was described by a single parameter, $Q=I_{3/1}/\gamma_0^2$ , which for linear polydisperse PE was correlated to the high molecular weight fraction and was constant over a broad range of applied Deborah numbers for the respective excitation frequencies. Since we need to correlate structural features such as broad MWD and HMW to polymer performance under processing conditions, we have to extend the analysis of linear rheological parameters, such as zero-shear viscosity, to non-linear parameters, e.g., the Q parameter quantified and used here.  相似文献   

16.
A power law distribution of relaxation times, large normal stress differences, and physical rupture of molecular network strands dominate the shear behavior of polymers at the gel point (critical gels). This is shown in a series of well-defined experiments with increasing magnitude of shear on a model-network polymer system consisting of a linear, telechelic, vinyl-terminated poly-dimethylsiloxane (PDMS) and a four-functional siloxane crosslinker. Stable samples were prepared by stopping the crosslinking reaction at different extents of reaction in the vicinity of the gel point (GP). The Gel Equation has been shown to be valid up to strains of about 2 when using a finite strain tensor. Larger strains have been found to disrupt the network structure of the crosslinking polymer, and introduce a mechanical delay to the gel point. A sample that was crosslinked beyond the gel point (p>p c ) can be reduced from the solid state to a critical gel, or even to a viscoelastic liquid, depending on the magnitude of shear strain. As a consequence, the relaxation exponent of a critical gel created under the influence of shear is less than that of a quiescently crosslinked critical gel.  相似文献   

17.
This work aims to elucidate how molecular parameters dictate the occurrence of inhomogeneous cohesive failure during step strain and large amplitude oscillatory shear (LAOS) respectively in entangled polymer mixtures. Based on three well-entangled polybutadiene (PB) mixtures, we perform simultaneous rheometric and particle-tracking velocimetric (PTV) measurements to illustrate how the slip length controls the degree of shear banding. Specifically, the PB mixtures were prepared using the same parent polymer (M w ∼ 106 g/mol) at 10 wt.% concentration in respective polybutadiene solvents (PBS) of three different molecular weights 1.5, 10, and 46 kg/mol. After step strain, the entangled PB mixture with PBS-1.5 K displayed interfacial failure whereas the PB mixture with PBS-10 K showed bulk failure, demonstrating the effectiveness of our strategy to suppress wall slip by controlling PBS’ molecular weight. Remarkably, the PBS-46K actually allows the elastic yielding to occur homogeneously so that no appreciable macroscopic motions were observed upon shear cessation. PBS is found to play a similar role in LAOS of these three PB mixtures. Finally, we demonstrate that in case of the slip-prone mixture based on PBS-1.5 K the interfacial failure could be drastically reduced by use of shearing plates with considerable surface roughness.  相似文献   

18.
In this study we compare three rheological ways for Long Chain Branching (LCB) characterization of a broad variety of linear and branched polyethylene compounds. One method is based on dynamical spectrometry in the linear domain and uses the van Gurp Palmen plot. The two other methods are both based on non linear rheology (Fourier Transform Rheology (FTR) and chain orientation/relaxation experiments). FTR consists in the Fourier analysis of the shear stress signal due to large oscillatory shear strains. In the present work we focus on the third and the fifth harmonics of the shear stress response. Chain orientation/relaxation experiment consists in the analysis of the polymer relaxation after a large step strain obtained by squeeze flow. In this method, relaxation is measured by dynamical spectrometry and is characterized by two relaxation times related to LCB. All methods distinguish clearly the group of linear polyethylene from the group of branched polyethylene. However, FTR and Chain orientation/relaxation experiments show a better sensitivity than the van Gurp Palmen plot. Non linear experiments seem suitable to distinguish long branched polyethylene between themselves.  相似文献   

19.
The paper presents an approach for modeling polymer flows with non-slip, slip and changing non-slip — slip boundary conditions at the wall. The model consists of a viscoelastic constitutive equation for polymer flows in the bulk, prediction of the transition from non-slip to sliding boundary conditions, a wall slip model, and a model for the compressibility effects in capillary polymer flows. The bulk viscoelastic constitutive equation contains a hardening parameter which is solely determined by the polymer molecular characteristics. It delimits the conditions for the onset of solid, rubber-like behavior. The non-monotone wall slip model introduced for polymer melts, modifies a slip model derived from a simple stochastic model of interface molecular dynamics for cross-linked elastomers. The predictions for the onset of spurt, as well as the numerical simulations of hysteresis, spurt, and stress oscillations are demonstrated. They are also compared with available data for a high molecular weight, narrow distributed polyisoprene. By using this model beyond the critical conditions, many of the qualitative features of the spurt and oscillations observed in capillary and Couette flows of molten polymers, are described.Notations upper convected derivative of elastic strain tensor - f, fm, fmin dimensionless (sliding) shear friction characteristics, and its maximum and minimum - G Hookean elastic modulus - Gp plateau modulus - G, G storage and loss moduli - I1, I2 first and second invariant of strain tensor - I1, I0 capillary and barrel lengths - M non-dimensional mass flow rate - MC critical molecular weight - M*, Me molecular weights of a statistical segment, and of polymer chain between entanglements - Mn, MW number average and weight average molecular weights - m, k two fitting parameters of slip model - s , s o nominal and characteristic sliding velocities - u non-dimensional sliding velocity - u sc initial (infinitesimal) slip velocity - u 1 upper limit of u on the lower branch - u 2 lower limit of u on the upper branch - u max value of u corresponding to fmin - u min value of u corresponding to fmax - U piston speed - Q nominal volumetric flow rate - q non-dimensional volumetric flow rate - R, Ro capillary and barrel radii - M non-dimensional mass flow rate  相似文献   

20.
In this work, the effect of multi-walled carbon nanotube (CNT) and montmorillonite nanoclay on polymer chain dynamics is investigated around the percolation concentration for systems based on ethylene vinyl acetate (EVA) copolymer. Then, the results obtained are compared with literature data to determine if, regardless of particle characteristics, a universal rheological behavior can be detected at percolation. To do so, rheological analyses are performed under small amplitude oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS), and transient shear step. SAOS data showed that, while the dynamics related to the Rouse relaxation time (τ R) were not significantly influenced, the reptation relaxation time (τ D) was strongly increased by the presence of nanoparticles. In step shear transient tests, the critical shear rate \( \left({\dot{\upgamma}}_{\mathrm{cr}}\right) \) for overshoot appearance was decreased due to chain confinement, and the formation of particle network strongly increased the level of stress overshoot. Particle networks increased significantly the nonlinear parameters (I 3/I 1 and Q 0) obtained under LAOS and quantified by FT-rheology. In all measurements, due to the higher surface area associated to its size and density as well as hollow structure, CNT showed stronger effects compared to clay. Moreover, while the percolation concentration was different for CNT and clay, both systems showed similar behavior at percolation: a 0.5 scaling for G′ indicating a Rouse-dominated behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号