首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决双光子荧光显微成像系统轴向扫描问题,提出一种基于数字微镜(DMD)的快速轴向扫描系统。该系统采用DMD选择光路,不同光路放置不同焦距的透镜组对光束发散角产生不同的改变,经物镜聚焦后得到不同深度的轴上扫描点。对该系统的轴向扫描距离、扫描点位置及衍射效率进行了理论计算仿真,结果表明:扫描系统采用4个模块以及5个模块时其轴向扫描距离均可达到1 mm,4模块系统中透镜的焦距为297.3 mm,5模块系统中透镜焦距为361.47 mm。轴向扫描点除边缘点外线性分布, 轴向扫描频率达到几十kHz,满足脑神经成像的要求。  相似文献   

2.
Ma Y  Grant J  Saha S  Cumming DR 《Optics letters》2012,37(9):1484-1486
We describe a terahertz single pixel imaging system based on a Nipkow disk. Nipkow disks have been used for fast scanning imaging systems since the first experimental television was invented in 1926. In our work, a Nipkow disk with 24 scanning lines was used to provide an axial resolution of 2 mm/pixel. We also show that by implementing a microscanning technique the axial resolution can be further improved to 0.5 mm/pixel. Imaging of several objects was demonstrated to show that this simple scanning system is promising for fast or real time terahertz imaging applications.  相似文献   

3.
Optical sectioning techniques offer the ability to acquire three‐dimensional information from various organ tissues by discriminating between the desired in‐focus and out‐of‐focus (background) signals. Alternative techniques to confocal, such as active structured illumination, exist for fast optically sectioned images, but they require individual axial planes to be imaged consecutively. In this article, an imaging technique (THIN), by utilizing active Talbot illumination in 3D and multiplexed holographic Bragg filters for depth discrimination, is demonstrated for imaging in vivo 3D biopsy without mechanical or optical axial scanning.  相似文献   

4.
Durst ME  Zhu G  Xu C 《Optics Communications》2008,281(7):1796-1805
Simultaneous spatial and temporal focusing (SSTF), when combined with nonlinear microscopy, can improve the axial excitation confinement of wide-field and line-scanning imaging. Because two-photon excited fluorescence depends inversely on the pulse width of the excitation beam, SSTF decreases the background excitation of the sample outside of the focal volume by broadening the pulse width everywhere but at the geometric focus of the objective lens. This review theoretically describes the beam propagation within the sample using Fresnel diffraction in the frequency domain, deriving an analytical expression for the pulse evolution. SSTF can scan the temporal focal plane axially by adjusting the GVD in the excitation beam path. We theoretically define the axial confinement for line-scanning SSTF imaging using a time-domain understanding and conclude that line-scanning SSTF is similar to the temporally-decorrelated multifocal multiphoton imaging technique. Recent experiments on the temporal focusing effect and its axial confinement, as well as the axial scanning of the temporal focus by tuning the GVD, are presented. We further discuss this technique for axial-scanning multiphoton fluorescence fiber probes without any moving parts at the distal end. The temporal focusing effect in SSTF essentially replaces the focusing of one spatial dimension in conventional wide-field and line-scanning imaging. Although the best axial confinement achieved by SSTF cannot surpass that of a regular point-scanning system, this trade-off between spatial and temporal focusing can provide significant advantages in applications such as high-speed imaging and remote axial scanning in an endoscopic fiber probe.  相似文献   

5.
多焦点结构光照明显微技术(multifocal structured illumination microscopy, MSIM)能在50μm的成像深度内和1Hz的成像速度下实现两倍于衍射极限分辨率的提升,相比传统的宽场结构光照明显微技术,具有较大的成像深度和层析能力,更适合应用于厚样品的长时程三维超分辨成像.然而, MSIM存在成像速度慢、图像处理过程复杂等问题.本文提出了一种基于平场复用多焦点结构光照明的快速超分辨显微成像方法和系统(flat-field multiplexed MSIM, FM-MSIM),通过在照明光路中插入光束整形器件,将高斯光束转变为均为分布的平顶光束,提高激发点阵的强度均匀性和扩大视场;通过将每个衍射受限的激发点沿y方向延长,形成新的多路复用多焦点阵照明图案,提高能量利用率,减少扫描步数,进而提高成像速度和信噪比;结合基于多重测量矢量模型的稀疏贝叶斯学习图像重构算法,简化图像重构步骤,在保证空间分辨率的同时实现至少4倍于传统MSIM的成像速度.在此基础上,利用搭建的FM-MSIM系统进行了BSC细胞微管样片和小鼠肾切片标准样片的超分辨成像实验,实验结果证明...  相似文献   

6.
为解决牙科扫描探头小型化问题,基于结构光三维重建算法,创新性地设计出一种投影与成像共孔径设置的小型化牙科三维扫描仪探头光学系统。系统采用分视场共孔径技术,部分视场用于实现投影功能,另一部分视场用于实现成像功能,投影区域和成像区域存在公共区域。仿真实验给出了在扫描范围为46×35mm2内的系统性能,借助LightTools软件做了照明分析仿真,证明了系统光路的可行性。  相似文献   

7.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

8.
The purpose of this study was to quantitatively evaluate in a phantom model the practical impact of alteration of key imaging parameters on image quality and artifacts for the most commonly used fast T(2)-weighted MR sequences. These include fast spin-echo (FSE), single shot fast spin-echo (SSFSE), and spin-echo echo-planar imaging (EPI) pulse sequences. We developed a composite phantom with different T1 and T2 values, which was evaluated while stationary as well as during periodic motion. Experiments involved controlled variations in key parameters including effective TE, TR, echo spacing (ESP), receive bandwidth (BW), echo train length (ETL), and shot number (SN). Quantitative analysis consisted of signal-to-noise ratio (SNR), image nonuniformity, full-width-at-half-maximum (i.e., blurring or geometric distortion) and ghosting ratio. Among the fast T(2)-weighted sequences, EPI was most sensitive to alterations in imaging parameters. Among imaging parameters that we tested, effective TE, ETL, and shot number most prominently affected image quality and artifacts. Short T(2) objects were more sensitive to alterations in imaging parameters in terms of image quality and artifacts. Optimal clinical application of these fast T(2)-weighted imaging pulse sequences requires careful attention to selection of imaging parameters.  相似文献   

9.
超声/光声双模态成像技术因其同时兼具超声的高分辨率结构成像和光声的高对比度功能成像优势,极大地推动了光声成像技术的临床应用推广.传统超声/光声双模态成像技术多基于超声成像所用阵列探头同时收集光声信号,系统结构紧凑且无需图像配准,操作便捷.但该类设备使用阵列探头和多通道数据采集,使得其成本较高;且成像结果易受通道一致性差异影响.本文提出了一种基于声学扫描振镜的超声/光声双模态成像技术,该技术采用单个超声换能器结合一维声学扫描振镜进行快速声束扫描,实现超声/光声双模态成像,是一种小型化、低成本的双模态快速成像技术.本文开展了系列仿体和活体成像研究,实验结果表明:系统有效成像范围为15.6 mm,超声和光声成像B扫描速度分别为1.0 s–1和0.1 s–1 (光声成像速度主要受制于脉冲激光器重复频率).基于本文所提技术研究,有助于进一步推动超声/光声双模态成像技术的临床转化和普及;也为基于超声信号检测的多模态成像技术提供了一种低成本、小型化和快速声信号检测的参考方案.  相似文献   

10.
Tsai  M. -T.  Chang  F. -Y. 《Laser Physics》2012,22(4):791-796
In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ∼240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.  相似文献   

11.
An optical coherence microscopy system based on line illumination and detection is demonstrated. The system uses a Linnik-type interferometer illuminated by a broadband Ti:sapphire laser and detected by a high-speed, line-scan CCD camera. This approach is less sensitive to incoherent scattering and sample motion than full-field imaging. Spatial resolutions of approximately 2 microm x approximately 3 microm(transverse x axial) are achieved. The sensitivity of the system is 93 dB with averaging over 30 line scans. En face real time, cellular-level imaging of biological tissues is demonstrated at approximately 2 frames/s.  相似文献   

12.
徐鹏程  肖亮 《波谱学杂志》2020,37(3):283-290
当前临床高场磁共振成像(MRI)系统要求成像仪控制台支持16个甚至32个接收通道,可以频繁和高速地进行数据传输并支持快速成像.基于此要求,本文研发了一个基于PowerPC处理器的数据传输模块,将其集成于自行研发的MRI成像仪控制台中,用于成像过程中控制台与计算机之间数据的高速传输.该模块以飞思卡尔公司的高性能PowerPC处理器—MPC8270为核心,运行嵌入式Linux操作系统.处理器与用户计算机之间通过百兆以太网连接,使用局部总线连接控制台的序列运行模块和数据采集模块(数量可扩展).处理器响应数据采集模块发来的中断请求以快速读取和上传数据.本设计通过驱动程序的设计以保障响应的速度与可靠性.成像实验表明此设计方案能够满足多个接收通道数据快速获取与传输的需求.  相似文献   

13.
In Optical Coherence Tomography (OCT), both high axial and lateral resolutions are desired. While axial (z-axis) resolution is achieved by a broadband source, lateral (x-y axes) resolution is achieved by high NA lenses. However, high NA objectives result in decreased depth of focus (DOF). The small DOF makes it difficult to obtain single shot imaging of biological samples having large lateral dimension. In this work we incorporate special interfering phase mask allowing to extend the DOF of an OCT system and to allow imaging of samples without axial scanning.  相似文献   

14.
15.
In this study, we describe the development of two-dimensional, high repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent flows. In particular, we report what we believe to be the first sets of high-speed 2D Rayleigh scattering images in turbulent non-reacting jets, yielding temporally correlated image sequences of the instantaneous mixture fraction field. Results are presented for turbulent jets of propane issuing into a low-speed co-flow of air at jet-exit Reynolds numbers of 10,000, 15,000, and 30,000 at various axial positions downstream of the jet exit. The quantitative high-speed mixture fraction measurements are facilitated by the use of a calibrated, un-intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition rate pulse-burst laser system (PBLS) at Ohio State, which yields output energies of ∼200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The quality, accuracy, and resolution of the imaging system and the resulting image sets are assessed by (1) comparing the mean mixture fraction results to known scaling laws for turbulent jets, (2) comparing instantaneous images/mixture fraction profiles acquired simultaneously with the high-speed CMOS camera and a well-characterized, high-quantum efficiency CCD camera, and (3) comparing statistical quantities such as the probability density function of the mixture fraction results using the high-speed CMOS camera and the CCD camera. Results indicate accurate mixture fraction measurements and a high potential for accurately measuring mixture fraction gradients in both time and space.  相似文献   

16.
We describe an artifact removal setup swept-source optical coherence tomography (OCT) system that enables high-speed full-range imaging. We implement a piezoelectric fiber stretcher to generate a periodic phase shift between successive A-scans, thus introducing a transverse modulation. The depth ambiguity is then resolved by performing a Fourier filtering in the transverse direction before processing the data in the axial direction. The dc artifact is also removed. The key factor is that the piezoelectric fiber stretcher can be used to generate discrete phase shifts with a high repetition rate. The proposed experimental setup is a much improved version of the previously reported B-M mode scanning for spectral-domain OCT in that it does not generate additional artifacts. It is a simple and low-cost solution for artifact removal that can easily be applied.  相似文献   

17.
反射式光纤共焦扫描成像的研究   总被引:11,自引:2,他引:9  
建立了反射式光纤共焦扫描成像系统,分析了光纤-集光透镜参数A及物透镜有效数值孔径等对系统成像分辨率的影响。并在此基础上选择了合适参数的透镜,获得了优化的反射式光纤共焦扫描成像系统,测试结果表明,该系统具有亚微米级横向成像能力,微米级向层析能力,成像稳定性那,它将应用于材料及生物组织三维成像检测中。  相似文献   

18.
TDI imaging is introduced as a solution to industrial web inspection under low-light illumination. In addition to the original purpose of recording clear blur-free images of the objects moving over industrial platforms, it can also be used as a tool for profilometry and automated visual inspection when coupled with proper structured light illumination modules. This paper illustrates a system employing a pulsed laser diode, uniform intensity line generating optics and a high-speed TDI imager for recording structured light patterns from rotating cylindrical objects. Defect or shape information is coded as distortions in a regular grating pattern recorded by the TDI imager. The shape or defect profile is retrieved by employing Fourier transform and scanning spatial phase detection techniques.  相似文献   

19.
This paper explains the application of scanning moiré in association with TDI (Time Delay and Integration) imaging for complete peripheral inspection of cylindrical objects. Based on the structured light technique, a grating pattern modulated by deformations, such as dents on the surface of a rotating cylindrical object, is recorded using a TDI camera. The illumination system consists of an intensity modulated, line generating laser diode aligned at an angle to the camera axis. By using the TDI option for recording every nth line, an online scanning moiré pattern is generated. After providing a simple explanation of the scanning moiré, the effects of object rotation speed and TDI scan speed on the fringe pattern are discussed and demonstrated. The techniques presented here offer low cost solutions to industrial machine vision tasks related to peripheral imaging and inspection of cylindrical objects.  相似文献   

20.
张宇  唐志列  吴泳波  束刚 《物理学报》2015,64(24):240701-240701
基于声透镜的光声成像系统中, 由样品的光声压分布等效样品的吸收分布, 进行光声像重建, 但之前的这种等效是一种近似, 理论上并不准确. 本文阐述了声透镜三维光声成像的基本原理, 揭示了声透镜像面上光声压信号的时间分布与样品轴向吸收分布之间的关系; 提出用积分法和希尔伯特变换提取光声信号瞬时值法, 解调样品吸收系数分布并重建光声像; 实验上, 对不同样品分别用积分法和希尔伯特变换法获取样品的吸收系数, 重建光声像的横向和轴向分辨率均约为1 mm, 实现了真正的三维快速光声成像.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号