首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Let (M, g) and \({(K, \kappa)}\) be two Riemannian manifolds of dimensions m and k, respectively. Let \({\omega \in C^{2} (N), \omega > 0}\) . The warped product \({M \times_\omega K}\) is the (mk)-dimensional product manifold \({M \times K}\) furnished with metric \({g + \omega^{2} \kappa}\) . We prove that the supercritical problem $$- \Delta_{g + \omega^{2} \kappa} u + hu = u^{\frac{m+2}{m-2} \pm \varepsilon} ,\quad u > 0,\quad {\rm in}\,\, (M \times_{\omega} K, g + \omega^{2} \kappa)$$ has a solution concentrated along a k-dimensional minimal submanifold \({\Gamma}\) of \({M \times_{\omega } N}\) as the real parameter \({\varepsilon}\) goes to zero, provided the function h and the sectional curvatures along \({\Gamma}\) satisfy a suitable condition.  相似文献   

2.
The overlap, \({\mathcal{D}_N}\) , between the ground state of N free fermions and the ground state of N fermions in an external potential in one spatial dimension is given by a generalized Gram determinant. An upper bound is \({\mathcal{D}_N\leq\exp(-\mathcal{I}_N)}\) with the so-called Anderson integral \({\mathcal{I}_N}\) . We prove, provided the external potential satisfies some conditions, that in the thermodynamic limit \({\mathcal{I}_N = \gamma\ln N + O(1)}\) as \({N\to\infty}\) . The coefficient γ > 0 is given in terms of the transmission coefficient of the one-particle scattering matrix. We obtain a similar lower bound on \({\mathcal{D}_N}\) concluding that \({\tilde{C} N^{-\tilde{\gamma}} \leq \mathcal{D}_N \leq CN^{-\gamma}}\) with constants C, \({\tilde{C}}\) , and \({\tilde{\gamma}}\) . In particular, \({\mathcal{D}_N\to 0}\) as \({N\to\infty}\) which is known as Anderson’s orthogonality catastrophe.  相似文献   

3.
Let \({f(z) = \sum_{n=1}^\infty a(n)e^{2\pi i nz} \in S_k^{\mathrm{new}}(\Gamma_0(N))}\) be a newform of even weight \({k \geq 2}\) that does not have complex multiplication. Then \({a(n) \in \mathbb{R}}\) for all n; so for any prime p, there exists \({\theta_p \in [0, \pi]}\) such that \({a(p) = 2p^{(k-1)/2} {\rm cos} (\theta_p)}\) . Let \({\pi(x) = \#\{p \leq x\}}\) . For a given subinterval \({[\alpha, \beta]\subset[0, \pi]}\) , the now-proven Sato–Tate conjecture tells us that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} \sim \mu_{ST} ([\alpha, \beta])\pi(x),\quad \mu_{ST} ([\alpha, \beta]) = \int\limits_{\alpha}^\beta \frac{2}{\pi}{\rm sin}^2(\theta) d\theta. $$ Let \({\epsilon > 0}\) . Assuming that the symmetric power L-functions of f are automorphic, we prove that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} = \mu_{ST} ([\alpha, \beta])\pi(x) + O\left(\frac{x}{(\log x)^{9/8-\epsilon}} \right), $$ where the implied constant is effectively computable and depends only on k,N, and \({\epsilon}\) .  相似文献   

4.
We examine the validity of the Poincaré inequality for degenerate, second-order, elliptic operators H in divergence form on \({L_2(\mathbf{R}^{n}\times \mathbf{R}^{m})}\) . We assume the coefficients are real symmetric and \({a_1H_\delta\geq H\geq a_2H_\delta}\) for some \({a_1,a_2>0}\) where H δ is a generalized Gru?in operator, $$H_\delta=-\nabla_{x_1}\,|x_1|^{\left(2\delta_1,2\delta_1'\right)} \,\nabla_{x_1}-|x_1|^{\left(2\delta_2,2\delta_2'\right)} \,\nabla_{x_2}^2.$$ Here \({x_1 \in \mathbf{R}^n,\; x_2 \in \mathbf{R}^m,\;\delta_1,\delta_1'\in[0,1\rangle,\;\delta_2,\delta_2'\geq0}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta}}\) if \({|x_1|\leq 1}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta'}}\) if \({|x_1|\geq 1}\) . We prove that the Poincaré inequality, formulated in terms of the geometry corresponding to the control distance of H, is valid if n ≥ 2, or if n = 1 and \({\delta_1\vee\delta_1'\in[0,1/2\rangle}\) but it fails if n = 1 and \({\delta_1\vee\delta_1'\in[1/2,1\rangle}\) . The failure is caused by the leading term. If \({\delta_1\in[1/2, 1\rangle}\) , it is an effect of the local degeneracy \({|x_1|^{2\delta_1}}\) , but if \({\delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , it is an effect of the growth at infinity of \({|x_1|^{2\delta_1'}}\) . If n = 1 and \({\delta_1\in[1/2, 1\rangle}\) , then the semigroup S generated by the Friedrichs’ extension of H is not ergodic. The subspaces \({x_1\geq 0}\) and \({x_1\leq 0}\) are S-invariant, and the Poincaré inequality is valid on each of these subspaces. If, however, \({n=1,\; \delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , then the semigroup S is ergodic, but the Poincaré inequality is only valid locally. Finally, we discuss the implication of these results for the Gaussian and non-Gaussian behaviour of the semigroup S.  相似文献   

5.
Let \({s = \{s_{jk}\}_{0 \leq j+k \leq 3}}\) be a given complex-valued sequence. The cubic complex moment problem involves determining necessary and sufficient conditions for the existence of a positive Borel measure \({\sigma}\) on \({\mathbb{C}}\) (called a representing measure for s) such that \({s_{jk} = \int_{\mathbb{C}}\bar{z}^j z^k d\sigma(z)}\) for \({0 \leq j + k \leq 3}\) . Put $$\Phi = \left(\begin{array}{lll} s_{00} & s_{01} & s_{10} \\s_{10} & s_{11} & s_{20} \\s_{01} & s_{02} & s_{11}\end{array}\right), \quad \Phi_z = \left(\begin{array}{lll}s_{01} & s_{02} & s_{11} \\s_{10} & s_{12} & s_{21} \\s_{02} & s_{03} & s_{12}\end{array} \right)\quad {\rm and}\quad\Phi_{\bar{z}} = (\Phi_z)^*.$$ If \({\Phi \succ 0}\) , then the commutativity of \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) is necessary and sufficient for the existence a 3-atomic representing measure for s. If \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) do not commute, then we show that s has a 4-atomic representing measure. The proof is constructive in nature and yields a concrete parametrization of all 4-atomic representing measures of s. Consequently, given a set \({K \subseteq \mathbb{C}}\) necessary and sufficient conditions are obtained for s to have a 4-atomic representing measure \({\sigma}\) which satisfies \({{\rm supp} \sigma \cap K \neq \emptyset}\) or \({{\rm supp} \sigma \subseteq K}\) . The cases when \({K = \overline{\mathbb{D}}}\) and \({K = \mathbb{T}}\) are considered in detail.  相似文献   

6.
Let \({\Omega \subset \mathbb{R}^2}\) be an open, bounded domain and \({\Omega = \bigcup_{i = 1}^{N} \Omega_{i}}\) be a partition. Denote the Fraenkel asymmetry by \({0 \leq \mathcal{A}(\Omega_i) \leq 2}\) and write $$D(\Omega_i) := \frac{|\Omega_{i}| - {\rm min}_{1 \leq j \leq N}{|\Omega_{j}|}}{|\Omega_{i}|}$$ with \({0 \leq D(\Omega_{i}) \leq 1}\) . For N sufficiently large depending only on \({\Omega}\) , there is an uncertainty principle $$\left(\sum_{i=1}^{N}{\frac{|\Omega_{i}|}{|\Omega|}{\mathcal{A}}(\Omega_i)}\right) + \left(\sum_{i=1}^{N}{\frac{|\Omega_i|}{|\Omega|}D(\Omega_i)}\right) \geq \frac{1}{60000}.$$ The statement remains true in dimensions \({n \geq 3}\) for some constant \({c_{n} > 0}\) . As an application, we give an (unspecified) improvement of Pleijel’s estimate on the number of nodal domains of a Laplacian eigenfunction and an improved inequality for a spectral partition problem.  相似文献   

7.
8.
9.
We show that every set \({S \subseteq [N]^d}\) occupying \({\ll p^{\kappa}}\) residue classes for some real number \({0 \leq \kappa < d}\) and every prime p, must essentially lie in the solution set of a polynomial equation of degree \({\ll ({\rm log} N)^C}\) , for some constant C depending only on \({\kappa}\) and d. This provides the first structural result for arbitrary \({\kappa < d}\) and S.  相似文献   

10.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

11.
We study the problem $$\left\{\begin{array}{ll}\Delta_p u = |u|^{q-2}u, & \quad x \in \Omega ,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}= \lambda |u|^{p-2}u, &\quad x \in \partial \Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N}\) is a bounded smooth domain, \({\nu}\) is the outward unit normal at \({\partial \Omega}\) and \({\lambda > 0}\) is regarded as a bifurcation parameter. When p = 2 and in the superlinear regime q > 2, we show existence of n nontrivial solutions for all \({\lambda > \lambda_n}\) , \({\lambda_n}\) being the n-th Steklov eigenvalue. It is proved in addition that bifurcation from the trivial solution takes place at all \({\lambda_n}\) ’s. Similar results are obtained in the sublinear case 1 < q < 2. In this case, bifurcation from infinity takes place in those \({\lambda_n}\) with odd multiplicity. Partial extensions of these features are shown in the nonlinear diffusion case \({p \neq 2}\) and related problems under spatially heterogeneous reactions are also addressed.  相似文献   

12.
We prove two extrapolation results for singular integral operators with operator-valued kernels, and we apply these results in order to obtain the following extrapolation of L p -maximal regularity: if an autonomous Cauchy problem on a Banach space has L p -maximal regularity for some \({p \in (1,\infty )}\) , then it has \({\mathbb{E}_w}\) -maximal regularity for every rearrangement invariant Banach function space \({\mathbb{E}}\) with Boyd indices \({1 < p_\mathbb{E} \leq q_\mathbb{E} < \infty}\) and every Muckenhoupt weight \({w \in A_{p \mathbb{E}}}\) . We prove a similar result for nonautonomous Cauchy problems on the line.  相似文献   

13.
In this paper, we prove the Hyers–Ulam stability theorem when \({f, g, h : \mathbb{R} \to \mathbb{R}}\) satisfy $$|f(x + y) - g(x) - h(y)| \leq \epsilon$$ in a set \({\Gamma \subset \mathbb{R}^{2}}\) of measure \({m(\Gamma) = 0}\) , which refines a previous result in Chung (Aequat Math 83:313–320, 2012) and gives an affirmative answer to the question in the paper. As a direct consequence we obtain that if \({f, g, h : \mathbb{R} \to \mathbb{R}}\) satisfy the Pexider equation $$f(x + y) - g(x) - h(y) = 0$$ in \({\Gamma}\) , then the equation holds for all \({x, y \in \mathbb{R}}\) . Using our method of construction of the set, we can find a set \({\Gamma \subset \mathbb{R}^{2n}}\) of 2n-dimensional measure 0 and obtain the above result for the functions \({f, g, h : \mathbb{R}^{n} \to \mathbb{C}}\) .  相似文献   

14.
In the paper we introduce the new game—the unilateral \({\mathcal{P}}\) -colouring game which can be used as a tool to study the r-colouring game and the (r, d)-relaxed colouring game. Let be given a graph G, an additive hereditary property \({\mathcal {P}}\) and a set C of r colours. In the unilateral \({\mathcal {P}}\) -colouring game similarly as in the r-colouring game, two players, Alice and Bob, colour the uncoloured vertices of the graph G, but in the unilateral \({\mathcal {P}}\) -colouring game Bob is more powerful than Alice. Alice starts the game, the players play alternately, but Bob can miss his move. Bob can colour the vertex with an arbitrary colour from C, while Alice must colour the vertex with a colour from C in such a way that she cannot create a monochromatic minimal forbidden subgraph for the property \({\mathcal {P}}\) . If after |V(G)| moves the graph G is coloured, then Alice wins the game, otherwise Bob wins. The \({\mathcal {P}}\) -unilateral game chromatic number, denoted by \({\chi_{ug}^\mathcal {P}(G)}\) , is the least number r for which Alice has a winning strategy for the unilateral \({\mathcal {P}}\) -colouring game with r colours on G. We prove that the \({\mathcal {P}}\) -unilateral game chromatic number is monotone and is the upper bound for the game chromatic number and the relaxed game chromatic number. We give the winning strategy for Alice to play the unilateral \({\mathcal {P}}\) -colouring game. Moreover, for k ≥  2 we define a class of graphs \({\mathcal {H}_k =\{G|{\rm every \;block \;of\;}G \; {\rm has \;at \;most}\; k \;{\rm vertices}\}}\) . The class \({\mathcal {H}_k }\) contains, e.g., forests, Husimi trees, line graphs of forests, cactus graphs. Let \({\mathcal {S}_d}\) be the class of graphs with maximum degree at most d. We find the upper bound for the \({\mathcal {S}_2}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_3}\) and we study the \({\mathcal {S}_d}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_4}\) for \({d \in \{2,3\}}\) . As the conclusion from these results we obtain the result for the d-relaxed game chromatic number: if \({G \in \mathcal {H}_k}\) , then \({\chi_g^{(d)}(G) \leq k + 2-d}\) , for \({k \in \{3, 4\}}\) and \({d \in \{0, \ldots, k-1\}}\) . This generalizes a known result for trees.  相似文献   

15.
Let \({\phi(n)}\) denote the Euler-totient function. We study the error term of the general k-th Riesz mean of the arithmetical function \({\frac {n}{\phi(n)}}\) for any positive integer \({k \ge 1}\) , namely the error term \({E_k(x)}\) where $${\frac{1}{k!} \sum_{n \leq x} \frac{n}{\phi(n)} \left(1-\frac{n}{x}\right)^k = M_k(x) + E_k(x).}$$ The upper bound for \({| E_k(x)|}\) established here thus improves the earlier known upper bounds for all integers \({k\geq 1}\) .  相似文献   

16.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

17.
For a map \({S : X \to X}\) and an open connected set (= a hole) \({H \subset X}\) we define \({\mathcal{J}_H(S)}\) to be the set of points in X whose S-orbit avoids H. We say that a hole H 0 is supercritical if
  1. for any hole H such that \({\overline{H}_0 \subset H}\) the set \({\mathcal{J}_H(S)}\) is either empty or contains only fixed points of S;
  1. for any hole H such that \({\overline{H} \subset H_0}\) the Hausdorff dimension of \({\mathcal{J}_H(S)}\) is positive.
The purpose of this note is to completely characterize all supercritical holes for the doubling map Tx =  2x mod 1.  相似文献   

18.
Let \({\mathcal{G} = (G, w)}\) be a positive-weighted simple finite connected graph, that is, let G be a simple finite connected graph endowed with a function w from the set of edges of G to the set of positive real numbers. For any subgraph \({G^\prime}\) of G, we define \({w(G^\prime)}\) to be the sum of the weights of the edges of \({G^\prime}\) . For any i 1, . . . , i k vertices of G, let \({D_{\{i_1,..., i_k\}} (\mathcal{G})}\) be the minimum of the weights of the subgraphs of G connecting i 1, . . . , i k . The \({D_{\{i_1,..., i_k\}}(\mathcal{G})}\) are called k-weights of \({\mathcal{G}}\) . Given a family of positive real numbers parametrized by the k-subsets of {1, . . . , n}, \({{\{D_I\}_{I} \in { \{1,...,n\} \choose k}}}\) , we can wonder when there exist a weighted graph \({\mathcal{G}}\) (or a weighted tree) and an n-subset {1, . . . , n} of the set of its vertices such that \({D_I (\mathcal{G}) = D_I}\) for any \({I} \in { \{1,...,n\} \choose k}\) . In this paper we study this problem in the case kn?1.  相似文献   

19.
In this article, we study the Fu?ik spectrum of the fractional Laplace operator which is defined as the set of all \({(\alpha, \beta)\in \mathbb{R}^2}\) such that $$\quad \left.\begin{array}{ll}\quad (-\Delta)^s u = \alpha u^{+} - \beta u^{-} \quad {\rm in}\;\Omega \\ \quad \quad \quad u = 0 \quad \quad \quad \qquad {\rm in}\; \mathbb{R}^n{\setminus}\Omega.\end{array}\right\}$$ has a non-trivial solution u, where \({\Omega}\) is a bounded domain in \({\mathbb{R}^n}\) with Lipschitz boundary, n > 2s, \({s \in (0, 1)}\) . The existence of a first nontrivial curve \({\mathcal{C}}\) of this spectrum, some properties of this curve \({\mathcal{C}}\) , e.g. Lipschitz continuous, strictly decreasing and asymptotic behavior are studied in this article. A variational characterization of second eigenvalue of the fractional eigenvalue problem is also obtained. At the end, we study a nonresonance problem with respect to the Fu?ik spectrum.  相似文献   

20.
We study the analog of semi-separable integral kernels in \({\mathcal {H}}\) of the type $$ K(x, x') = \left\{\begin{array}{ll} F_1(x) G_1(x'), \quad& a < x' < x < b,\\ F_2 (x)G_2(x'), \quad& a < x < x' < b,\end{array}\right.$$ where \({-\infty \leqslant a < b \leqslant \infty}\) , and for a.e. \({x \in (a, b)}\) , \({F_j (x) \in \mathcal{B}_2(\mathcal{H}_j, \mathcal{H})}\) and \({G_j(x) \in \mathcal {B}_2(\mathcal {H},\mathcal {H}_j)}\) such that F j (·) and G j (·) are uniformly measurable, and $$\begin{array}{ll} || F_j ( \cdot) ||_{\mathcal {B}_2(\mathcal {H}_j,\mathcal {H})} \in L^2((a, b)), ||G_j (\cdot)||_{\mathcal {B}_2(\mathcal {H},\mathcal {H}_j)} \in L^2((a, b)), \quad j=1,2, \end{array}$$ with \({\mathcal {H}}\) and \({\mathcal {H}_j}\) , j = 1, 2, complex, separable Hilbert spaces. Assuming that K(·, ·) generates a trace class operator K in \({L^2((a, b);\mathcal {H})}\) , we derive the analog of the Jost–Pais reduction theory that succeeds in proving that the Fredholm determinant \({{\rm det}_{L^2((a,b);\mathcal{H})}}\) (I ? α K), \({\alpha \in \mathbb{C}}\) , naturally reduces to appropriate Fredholm determinants in the Hilbert spaces \({\mathcal{H}}\) (and \({\mathcal{H}_1 \oplus \mathcal{H}_2}\) ). Explicit applications of this reduction theory to Schrödinger operators with suitable bounded operator-valued potentials are made. In addition, we provide an alternative approach to a fundamental trace formula first established by Pushnitski which leads to a Fredholm index computation of a certain model operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号