首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I. Hamadeh  R. Gomer 《Surface science》1985,154(1):168-188
The adsorption of CO, and to a lesser extent that of oxygen on Cu layers deposited on a W(110) surface has been investigated by thermal desorption. Auger, and XPS measurements. For CO the amount adsorbed decreases monotonically with Cu thickness from 1–5 layers. For O there is a slight increase for 1 layer, followed by a steep decrease up to 4 Cu layers where the amount adsorbed levels off. CO adsorption shifts the core levels of Cu (observed for 1 layer of Cu) to higher binding energy by 0.4 eV; the O 1s level of CO is also shifted to higher binding energy by 1.5 eV, relative to CO/W(110) suggesting that electron transfer from CO occurs but is passed on to the underlying W. For O adsorption there is very little shift in the Cu core levels or in the O 1s level, relative to O/W(110). Thermal desorption of CO at saturation coverage from Cu/W(110) shows desorption peaks at 195, 227 and 266 K, as well as small peaks associated with CO desorption from clean W, namely a peak at 363 K and β-desorption peaks at 1080 and 1180 K. As CO coverage is decreased the 195 and 227 K peaks disappear successively; the W-like peaks remain unchanged in intensity. It is argued that the latter may be due to adsorption on bare W at domain boundaries of the Cu overlayer, while the 190–266 K peaks are associated with adsorption on Cu, but probably involve reconstruction of the Cu layer. For n = 2–8 a single but composite peak is seen, shifting from 180 to 150 K as Cu thickness increases as well as a minor peak at 278 K, which virtually vanishes on annealing the Cu deposit at 850 K. The effect of tungsten electronic structure on the behavior of adsorbates on the Cu overlayers, as well as similar effects in other snadwich systems are discussed.  相似文献   

2.
Selected thermal desorption and valence band photoemission data on the chemisorption of CO on PtCu(111) surfaces are presented. The main objective is to make a comparison with CO chemisorption on an annealed (1 × 3) reconstructed Pt0.98Cu0.02(110) surface. The (111) alloy surfaces are unreconstructed (1 × 1) surfaces, with average near-surface Cu concentrations ranging from ? 7.5% to ? 20% as indicated by the Cu 920 eV Auger signal. It is observed that the effect of alloying Pt(111) with Cu is to progressively lower the desorption peak temperature and hence the free energy of CO desorption from Pt sites. A second observation is that the energy distribution of the Cu 3d-derived states is little affected by CO adsorption on Cu sites at 155 K. Both these results offer a contrast to the results for CO/Pt0.98Cu0.02(110) reported earlier.  相似文献   

3.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

4.
The interaction of CO, O2, H2, N2, C2H4 and C6H6 with an Ir(110) surface has been studied using LEED, Auger electron spectroscopy and flash desorption mass spectroscopy. Adsorption of oxygen at 30°C produces a (1× 2) structure, while a c(2 × 2) structure is formed at 400°C. Two peaks have been detected in the thermal desorption spectrum of oxygen following adsorption at 30°C. The heat of adsorption of hydrogen is slightly higher on Ir(110) than on Ir(111). Adsorption of carbon monoxide at 30°C produces a (2 × 1) surface structure. The main CO desorption peak is found around 230, while two other desorption peaks are observed around 340 and 160°C. At exposures between 250 and 500°C carbon monoxide adsorption yields a c(2 × 2) structure and a desorption peak around 600°C. Carbon monoxide is adsorbed on an Ir(110) surface partly covered with oxygen or carbon in a new binding state with a significantly higher desorption temperature than on the clean surface. Adsorption of nitrogen could not be detected on either clean or on carbon covered Ir(110) surfaces. The hydrocarbon molecules do not form ordered surface structures on Ir(110). The thermal desorption spectra obtained after adsorption of C6H6 or C2H4 are similar to those reported previously for Ir(111) consisting mostly of hydrogen. Heating the (110) surface above 700°C in the presence of C6H6 or C2H4 results in the formation of an ordered carbonaceous overlayer with (1 × 1) structure. The results are compared with those obtained previously on the Ir(111) and Ir(755) or stepped [6(111) × (100)] surfaces. The CO adsorption results are discussed in relation to data on similar surfaces of other Group VIII metals.  相似文献   

5.
The adsorption of hydrogen on a clean Cu10%/Ni90% (110) alloy single crystal was studied using flash desorption spectroscopy (FDS), Auger electron spectroscopy (AES), and work function measurements. Surface compositions were varied from 100% Ni to 35% Ni. The hydrogen chemisorption on a-surface of 100% nickel revealed strong attractive interactions between the hydrogen atoms in accordance with previous work on Ni(100). Three desorption states (β1, β2 and α) appeared in the desorption spectra. The highest temperature (α) state was occupied only after the initial population of the β2-state. As the amount of copper was increased in the nickel substrate, desorption from the higher energy binding α-state was reduced, indicating a decrease in the attractive interactions among hydrogen atoms. The hydrogen coverage at saturation was not affected by the addition of copper to the nickel substrate until the copper concentration was greater than 25% at which a sharp reduction in saturation coverage occurred. This phenomenon was apparently due to the adsorption of hydrogen on Ni atoms followed by occupation of NiNi and CuNi bridged adsorption sites, while occupation of CuCu sites was restricted due to an energy barrier to migration.  相似文献   

6.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

7.
CO adsorption on potassium covered Fe(110) has been studied using UPS, XPS, AES and flash desorption. It was found that CO adsorbs molecularly at room temperature with a larger binding energy than on clean Fe(110). The CO saturation coverage increases and the sticking coefficient decreases with increasing potassium coverage. On heating, the probability of adsorbed CO dissociating increases with the amount of potassium present. The UPS spectra show that the CO 4σ peak is shifted by 0.8 eV to higher binding energies on Fe(110) + K and that at 21.2 eV the peak due to the 1π + 5σ orbitals is split into a double peak. The catalytic relevance of the measurements is discussed with reference to the Fischer-Tropsch synthesis.  相似文献   

8.
本文采用基于密度泛函理论的第一性原理方法, 并同时考虑范德华力的作用, 计算并分析了CO在Cu(110)表面的吸附情况. 结果表明: 1) CO在两个表面Cu原子的短桥位位置吸附最强, 吸附能为1.28 eV. 第二稳定吸附位置为表面Cu原子的顶位, 吸附能为1.23 eV. CO在其他两个位置, 表面两个Cu的长桥位和表面四个Cu的中心位的吸附要弱一些, 约为0.86 eV 和 0.83 eV. 2) 在Cu表面吸附的CO的C-O键长有部分拉长, 这与较强的吸附能和电荷转移相应. 3) 电荷分析表明所有吸附的CO整体上从衬底上面获得部分电荷, 约为0.2 个电荷.  相似文献   

9.
本文采用基于密度泛函理论的第一性原理方法,并同时考虑范德华力的作用,计算并分析了CO在Cu(110)表面的吸附情况.结果表明:1)CO在两个表面Cu原子的短桥位位置吸附最强,吸附能为1.28 e V.第二稳定吸附位置为表面Cu原子的顶位,吸附能为1.23 e V.CO在其他两个位置,表面两个Cu的长桥位和表面四个Cu的中心位的吸附要弱一些,约为0.86 e V和0.83 e V.2)在Cu表面吸附的CO的C-O键长有部分拉长,这与较强的吸附能和电荷转移相应.3)电荷分析表明所有吸附的CO整体上从衬底上面获得部分电荷,约为0.2个电荷.  相似文献   

10.
Changes in the optical anisotropy of the Cu(110) surface due to adsorption and growth have been studied by reflectance difference spectroscopy (RDS). The optical anisotropy signal at 2.13 eV was found to be extremely sensitive to small quantities of CO, while the signal at 4.3 eV turned out to be particularly sensitive to the transition from a (3×1) to a (2×1) CO superstructure. In the case of the oxygen covered Cu(110), we have successfully monitored and analyzed the transition between two oxygen induced Cu(110) reconstructions: The c(6×2)O and the (2×1)O phases have clearly distinguishable RDS features, and the transition between them leads to a gradual transformation of the related RDS spectra. For the system Co on Cu(110)(2×1)O characteristic features of a CoCuO alloy phase have been identified, which allow to monitor the crucial stages of the Co thin film growth. The alloying and de-alloying are easily recognized with RDS. PACS 78.40.-q; 68.35.-p; 68.43.-h; 68.55.-a; 78.66.Bz; 78.68.+m  相似文献   

11.
Thermal desorption spectra taken after adsorption of carbon monoxide at room temperature on W(210) show sequential formation with increasing coverage of strongly bound β2 and β1 binding states, correlated to the sequential formation of P(2 × 1) and (1 × 1) adsorbate structures as observed by LEED. Adsorption at room temperature gives a poorly ordered arrangement of adsorbed CO molecules, but well-ordered structures are produced by subsequent anneal. For adsorption without anneal the work function increases monotonically with coverage to a maximum of Δφ = + 0.70 eV at saturation coverage of 1 monolayer. For adsorption followed by anneal the work function dependence upon coverage is less simple, with even a decrease of work function at coverages less than a quarter monolayer. LEED intensity-voltage measurements from P(2 × 1)CO and P(2 × 1)N structures suggest that CO molecules occupy the sites of 4-fold symmetry upon which nitrogen is believed to be adsorbed. The distinction between the β2 and β1 states of adsorbed CO is attributed to heterogeneity induced by the reduction in binding energy of a CO molecule when its nearest-neighbor sites are occupied.  相似文献   

12.
The adsorption of oxygen on the ruthenium (001) surface has been studied using a combination of techniques: LEED/Auger, Kelvin probe contact potential changes, and flash desorption mass spectrometry. Oxygen is rapidly adsorbed at 300 K, forming an ordered LEED structure having apparent (2 × 2) symmetry. Two binding states of oxygen are inferred from the abrupt change in surface work function as a function of oxygen coverage. LEED intensity measurements indicate that the oxygen layer undergoes an order-disorder transition at temperatures several hundred degrees below the onset of desorption. The order-disorder transition temperature is a function of the oxygen coverage, consistent with two binding states. A model involving the adsorption of atomic oxygen at θ < 0.5 and the formation of complexes with higher oxygen content at θ > 0.5 is proposed. The oxidation of CO to form CO2 was found to have the maximum rate of production at a ruthenium temperature of 950 K.  相似文献   

13.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

14.
R.J. Behm  G. Ertl  V. Penka 《Surface science》1985,160(2):387-399
The formation of ordered adlayers of CO on Ni(110) and the correlation between structure and adsorption energy, sticking coefficient and adsorbate induced change of work function was investigated. LEED, TDS and work function measurements served to monitor adsorption and desorption. Models are presented for the structures formed at intermediate coverages (0.5 < θ < 0.85) - identified as a c(8×2) and a c(4×2) structure - and the (2×1) formed close to saturation: The CO molecules are adsorbed on the Ni rows in the [110] direction, their separation is dominated by short range COCO repulsions rather than by the NiCO interaction. The repulsions in the [001] direction lead only to the formation of structures with staggered configurations. In the first two structures formed only below room temperature the CO stands upright and the repulsion is weak, leading to considerable disorder (antiphase domains) and a streaky LEED pattern. In the (2×1) structure which does not thermally disorder in the experimental temperature range, the high density of the adlayer results in a lateral tilt of the CO, and subsequently also to good correlation in the [001] direction. The repulsions become evident in TDS as a low temperature shoulder at the main peak (c(8×2) and c(4×2) structure) or as a distinct extra peak at 330 K ((2×1) structure). The adsorption kinetics can be modelled by a first order precursor model (K = 0.95). The work function almost linearly increases with coverage to 1500 mV at saturation. Both quantities are not noticeably affected by the degree of order in the adlayer.  相似文献   

15.
Carbon monoxide adsorption has been studied on a series of presulfided Ni(100) surfaces using vibrational spectroscopy. The sulfided Ni(100) surfaces were characterized using Auger electron spectroscopy and low energy electron diffraction, binding states were isolated by heating CO-dosed surfaces to prescribed temperatures, corresponding to the desorption temperatures of the CO. Adsorption of CO on Ni(100) with a p(2 × 2) array of sulfur lead to CO stretching frequencies of 1740 and 1930 cm?1 corresponding to desorption temperatures of 370 and 290 K, respectively. Adsorption of CO into the c(2 × 2)S structure resulted in a CO stretching frequency of 2115 cm?1 and a desorption peak near 140 K. The binding sites on the p(2 × 2)S structure were interpreted as metal four-fold hollows and bridging sites. The high frequency state was interpreted as weak bonding into the four-fold hollow with back donation into the π1 orbital on CO restricted by stearic hindrance due to adsorbed sulfur. Both the thermal desorption and vibrational results indicated that local CO-sulfur interactions are dominant on the presulfided Ni(100) surface in the coverage range studied.  相似文献   

16.
Hydrogen adsorption on Ni-rich (110) CuNi alloy surfaces has been studied by means of thermal desorption spectroscopy. After adsorption near room temperature the hydrogen desorption spectra exhibit a coverage dependence similar to that known from pure (110)Ni. Besides a slightly composition dependent desorption energy the alloy surfaces behave like a (110)Ni surface diluted by practically inert Cu. These results are compared to those reported by Yu Ling and Spicer.  相似文献   

17.
M. Juel  S. Raaen 《哲学杂志》2013,93(21):2475-2486

Adsorption and desorption of carbon monoxide (CO) from Mo(110) have been investigated by temperature programmed desorption (TPD). The TPD spectra exhibit peaks in two temperature regions: 250-400 and 850-1100 K. The first region correspond to adsorption in molecular form, whereas the latter region corresponds to desorption of CO that has been dissociatively adsorbed. When the surface was saturated by CO, about 35% of the desorption intensity originates from the high-temperature region (recombinative desorption) and the remaining desorption signal is from the low-temperature region (molecular adsorption). Desorption parameters for molecular adsorbed CO were obtained using several different heating rates. Desorption energies were estimated to range from 0.9 eV for low coverages of CO to about 0.65 eV for high coverages. Corresponding prefactors were estimated to be in the range from 1 21011 to 1 2109 sm 1. The experimental data have been compared with Monte Carlo simulations of first-order TPD from a bcc (110) lattice, in which partial poisoning of adsorption sites by dissociated carbon and oxygen was modelled. Repulsive near-neighbour interactions were used.  相似文献   

18.
The thermal and electro impact behaviour of NO adsorbed on Pt(111) and Pt(110) have been studied by LEED, Auger spectroscopy, and thermal desorption. NO was found to adsorb non-dissociatively and with very similar low coverage adsorption enthalpies on the two surfaces at 300 K. In both cases, heating the adlayer resulted in partial dissociation and led to the appearance of N2 and O2 in the desorption spectra. The (111) surface was found to be significantly more active in inducing the thermal dissociation of NO, and on this surface the molecule was also rapidly desorbed and dissociated under electron impact. Cross sections for these processes were obtained, together with the desorption cross section for atomically bound N formed by dissociation of adsorbed NO. Electron impact effects were found to be much less important on the (110) surface. The results are considered in relation to those already obtained by Ertl et al. for NO adsorption on Ni(111) and Pd(111), and in particular, the unusual desorption kinetics of N2 production are considered explicitly. Where appropriate, comparisons are made with the behaviour of CO on Pt(111) and Pt(110), and the adsorption kinetics of NO on the (110) surface have been examined.  相似文献   

19.
The adsorption of CO and NO on the (1×2) and (1×1) modifications of the Pt(110) surface was studied by x-ray photoemission spectroscopy, LEED and work-function change measurements. The O(1s) binding energy of adsorbed CO is site-specific and differentiates between on-top and bridge adsorbed species. CO adsorption on Pt(110)(1×2) at 120 K occurred sequentially into on-top and bridge sites yielding an orderedc(8×4) layer at the maximum coverage. At 300 K only on-top bonded CO was present after CO adsorption on the (1×2) surface. CO adsorption on the (1×1) surface at 120 K showed a transient bridge adsorbed CO and on-top CO at saturation, with an ordered (2×1)p1g1 LEED pattern. Heating the (2×1)p1g1 CO layer to 400 K also showed this transient bridge CO species. Work function changes generally correlated with the appearance of different CO species but were complex in detail. The findings for CO adsorption are consistent with the missing row model of the (1×2) surface.Parallel data for NO adsorption on (1×2) and (1×1) surfaces at 120 K were less informative than those for CO because O(1s) spectra showed single broad peaks. Peak contributions due to bridge and on-top bonded NO could be estimated.  相似文献   

20.
Growth of very thin silver films deposited under UHV conditions on the Ni(110) and Cu(110) faces was studied with the Auger Electron Spectroscopy. Silver 360eV and nickel 61eV Auger peaks kinetics show the Stranski-Krastanov growth mechanism. Two stages of the first ML growth at room temperature was observed. During annealing of 2 ML layer (the rate of temperature increase of 4 K/s) the silver Auger peak increases by about 10% atT 620 K. This indicates that reconstruction of silver islands takes place. The first monolayer desorbs atT=840 K. The Cu-Ag system was studied with silver 360eV and copper 62eV Auger peaks. The adsorption kinetics, up to 440 K, show the Stranski-Krastanov growth mechanism. After 1 ML deposition, the increase of the substrate temperature leads to the slope decrease of the adsorption kinetics. Adsorption kinetics forT=560–620 K show that after 1.5 ML deposition the silver dissolution occurs and the surface alloy is formed. Above 770 K the shape of kinetics drastically changes due to the decrease of a sticking coefficient.Presented at the Seminar on Secondary Electrons in Electron Spectroscopy, Microscopy, and Microanalysis, Chlum (The Czech Republic), 21–24 September, 1993.The authors would like to thank B. Stachnik and Z. Jankowski for the preparation of the measuring system.The work was supported by the Polish Committee for Scientific Research under Grant Nr. 20119 91 01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号