首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Chemical-vapor generation (CVG) is widely used as a sample-introduction technique for atomic spectrometry, with the advantages of efficient matrix separation, high analyte-transport efficiency, and high selectivity and sensitivity. Recently, photo-induced CVG (photo-CVG) was demonstrated to be a powerful alternative to conventional CVG. In photo-CVG, volatile species (including hydrides, elemental, carbonylated and alkylated analytes) are generated from non-volatile precursors by ultraviolet irradiation in the presence of low-molecular-weight organic compounds. Photo-CVG is simple, fast and environmentally friendly with little interference from transition metals. Its analytical applications have been demonstrated in analysis of Hg, conventional hydride-forming elements (As, Bi, Sb, Se, Te), transition metals (Ni, Co, Fe) and non-metals (I). In addition, photo-CVG was developed as a simple, effective interface between high-performance liquid chromatography (HPLC) and atomic spectrometry. This review summarizes the applications of photo-CVG for various analytes and as a novel interface between HPLC and atomic spectrometry. We also discuss current research on the possible reaction mechanism of photo-CVG.  相似文献   

2.
Selenium was the first reported element that could be converted into its volatile compounds via photochemical vapor generation (photo-CVG) process before its atomic spectrometric detection. Photo-CVG is a newly emerging vapor generation technique, offering its inherent advantages of matrix interferences eliminated and high vapor efficiency etc., photo-CVG has been combined with various methods for selenium determination and mechanism exploration. Herein, we summarize the development of selenium in photo-CVG from the first report in 2003, the mechanisms of selenium with or without TiO2 were discussed and its applications for selenium determination, speciation analysis and prereduction were summarized.  相似文献   

3.
A systematic investigation of UV photochemical vapor generation (photo-CVG) and its potential application for seven typical hydride-forming elements (As, Sb, Bi, Te, Sn, Pb and Cd) when combined with atomic fluorescence spectrometry (AFS) detection is presented. These analyte ions were converted to volatile species following UV irradiation of their aqueous solution to which low molecular weight organic acids (such as formic, acetic or propionic acid) had been added, and introduced to an atomic fluorescence spectrometer for subsequent analytical measurements. The experimental conditions for photo-CVG and the interferences arising from concomitant elements were carefully investigated. Limits of detection as low as 0.08, 0.1, 0.2 and 0.5 ng mL− 1 were obtained for Te, Bi, Sb and As, respectively, comparable to those by hydride generation-AFS. The RSDs obtained with the proposed method for these elements were better than 5% at 50 ng mL− 1. It is noteworthy that the presence of TiO2 nanoparticles combined with UV irradiation remarkably enhances the CVG efficiencies of Se(VI) and Te(VI), which cannot form hydrides with KBH4/NaBH4. Moreover, photo-CVG has a greater tolerance toward interferences arising from transition elements than hydride generation, and this facilitates its application to the analysis of complicated sample matrices.  相似文献   

4.
As is apparent from the literature devoted to the analytical atomic spectrometry, chemical vapor generation (CVG) of noble metals by reaction with tetrahydroborate in acidic media may enhance the introduction of these elements into different atomic spectrometric sources. Recent developments in the CVG of noble metals species by reaction with tetrahydroborate in acidic medium are surveyed. Different aspects of this novel technique are discussed, including type of instrumentation used for the reaction, separation and transport of the species, effect of chemical and physical factors, identification of the species, and the efficiency of the process. Limitations and future prospects of the CVG technique are discussed.  相似文献   

5.
UV photochemical vapor generation (photo-CVG) as sample introduction was first adapted for determination of ultratrace cobalt by atomic fluorescence spectrometry (AFS). Cobalt volatile species can be generated when the buffer system of formic acid and formate containing Co (II) is exposed to UV radiation. The generated gaseous products were separated from liquid phase within a gas–liquid separator and then transported to AFS for determination of cobalt. Factors affecting the efficiency of photo-CVG were investigated in detail, including type and concentration of low molecular weight (LMW) organic acid, buffer system, UV irradiation time, reaction temperature, carrier gas flow rate and hydrogen flow rate. With 4% (v/v) HCOOH and 0.4 mol L− 1 HCOONa buffer solution, 150 s irradiation time and 15 W low pressure mercury lamp, a generation efficiency of 23–25% was achieved. A limit of detection (LOD) of 0.08 ng mL− 1 without any pre-concentration procedure and a precision of 2.2% (RSD, n = 11) at 20 ng mL− 1 were obtained under the optimized conditions. The proposed method was successfully applied in the analysis of several simple matrix real water samples.  相似文献   

6.
With UV irradiation, Hg2+ in aqueous solution can be converted into Hg0 cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO2 more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO2-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02–0.04 μg L−1, with linear dynamic ranges up to 15 μg L−1. The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury. Image of the photo-CVG instrumentation showing the photoreactor inside the water cooling unit  相似文献   

7.
The efficiency data from individual reports on chemical vapour generation (CVG) of transition and noble metals are overviewed with respect to the ways that they were obtained. The values derived from direct measurement of analyte in the gaseous phase or obtained from comparison with other sample introduction techniques reflect well the true chemical vapour generation efficiency. The efficiencies reported this way do not exceed 30%. On the other hand, the percentage efficiency values derived from determination of analyte remaining in the waste liquid, usually in the high tens, can substantially overestimate the efficiency by neglecting the analyte retained within the system.  相似文献   

8.
Analytical and Bioanalytical Chemistry - In order to elucidate controversial results emerging in chemical vapor generation (CVG) for trace element determination, we conducted a series of...  相似文献   

9.
A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC–MS and FT–IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL−1, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH4/NaOH–acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME–AFS. Figure A new vapor generation system for mercury species using mercaptoethanol under UV irradiation was developed as an effective sample introduction unit for atomic fluorescence spectrometry  相似文献   

10.
Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH3Hg+ was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH3Hg+ was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be ∼95% by comparing the response with traditional SnCl2 chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg2+; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes “green” chemistry. The potential for application to other sample types and analytes is evident.  相似文献   

11.
To get insight into the mechanism of the effect of room-temperature ionic liquids (RTILs) on the chemical vapor generation (CVG) of noble metals, gold was taken as a model element, and eight RTILs were examined. All the RTILs resulted in 3-24 times improvement in sensitivity for Au, depending on their nature. For the RTILs with identical anion, the RTILs with the cations of short chain exhibited better enhancement effect than those with long alkyl chain length or complex branch chain. For the RTILs with identical cation, the RTILs with Br gave the best enhancement effect. The formation of ion pairs between the cation of RTILs and the anion species of gold via electrostatic interaction, and/or the substitution of the Cl in the anion species of gold by the anion of RTILs likely enabled a more effective CVG reaction to occur. The RTILs also facilitated the generation of small bubbles and provided an electrostatic stabilization to protect the unstable volatile gold species and to help fast isolation of volatile gold species from the reaction mixture. 1-Butyl-3-methylimidazolium tetrafluoroborate [C4mim]Br gave the best improvement in the sensitivity (24 times) among the RTILs studied, and also reduced the interferences from common transition and other noble metals. Based on the enhancement effect of [C4mim]Br, a novel flow injection-CVG-atomic fluorescence spectrometric method with a detection limit (3s) of 1.9 μg L−1 and a precision of 3.1% (50 μg L−1, RSD, n = 11) was developed for the determination of trace gold in geological samples.  相似文献   

12.
《Microchemical Journal》2011,97(2):277-282
UV photochemical vapor generation (photo-CVG) as sample introduction was first adapted for determination of ultratrace cobalt by atomic fluorescence spectrometry (AFS). Cobalt volatile species can be generated when the buffer system of formic acid and formate containing Co (II) is exposed to UV radiation. The generated gaseous products were separated from liquid phase within a gas–liquid separator and then transported to AFS for determination of cobalt. Factors affecting the efficiency of photo-CVG were investigated in detail, including type and concentration of low molecular weight (LMW) organic acid, buffer system, UV irradiation time, reaction temperature, carrier gas flow rate and hydrogen flow rate. With 4% (v/v) HCOOH and 0.4 mol L 1 HCOONa buffer solution, 150 s irradiation time and 15 W low pressure mercury lamp, a generation efficiency of 23–25% was achieved. A limit of detection (LOD) of 0.08 ng mL 1 without any pre-concentration procedure and a precision of 2.2% (RSD, n = 11) at 20 ng mL 1 were obtained under the optimized conditions. The proposed method was successfully applied in the analysis of several simple matrix real water samples.  相似文献   

13.
Flow analysis has played a major role in many areas of chemical analysis, making operations more robust and precise. It facilitates experimental studies opening new areas of research. In the field of arsenic research, there are various examples of surveys concerning arsenic determination and its species with the use of flow injection analysis (FIA) and sequential injection analysis (SIA). The increasing concern over the human exposure to arsenic and its species has necessitated the development of rapid, highly sensitive, precise, and accurate analytical methods for its determination in trace levels in environmental and biological samples. This review provides a literature survey on the automatic on-line hydride generation methodologies coupled to atomic spectrometry for determination of inorganic and organic arsenic species, during the last decades. All advances in on-line manifolds are categorized and highlighted. There are several reports of manifolds and setup instrumentation concerning hydride generation including continuous flow analysis (CFA), FIA, SIA, lab-on-valve (LOV), multicommutation flow systems, and hyphenated techniques. On-line preconcentration and pretreatment methodologies coupled with hydride generation such as solid phase extraction, co-precipitation and trapping are also discussed, as they are of particular interest in the development of fully automated methods.  相似文献   

14.
建立了化学蒸汽发生(CVG)电感耦合等离子体质谱(ICP MS)同时测定近岸及河口海水中超痕量As、Sb、Bi、Ge、Sn和Hg元素的方法.研究了CVG过程中KBH4、盐酸和硫脲的浓度以及样品流速、载气流速、海水样品盐度等对方法分析性能的影响.结果表明,在0.70%6盐酸、0.10 g/L硫脲、11.0 g/L硼氧化钾...  相似文献   

15.
Flame-in-gas shield miniature hydride atomizers (FIGS) have been investigated and evaluated in view of their alternative use to miniature diffusion flame hydride atomizer (MDF) to determination of hydride forming elements by atomic fluorescence spectrometry (AFS). Chemical vapour generation (CVG) by aqueous phase derivatization by NaBH4 in a continuous flow generator (CF) was employed for the generation of volatile hydrides of As, Sb, Bi, Se, Te and Sn. A dispersive AFS apparatus using electrodeless discharge lamps (EDL) as the excitation sources has been employed for both spectra acquisition and analytical determinations. The characteristics of FIGS in terms of background emission spectra, most intense AF spectral lines and limits of detection were compared with those of most popular MDF. FIGS presents a lower background emission with respect to MDF, allowing also the control of the molecular fluorescence of OH radicals in the determination of bismuth. Limits of detection for FIGS compare very well with to those obtained by MDF giving improvement factor of 5.5, 4.4, 3.6, 3.6, 0.7 an 0.5 for Bi, As, Se, Son, Te and Sb. Accuracy of FIGS has proven by determination of arsenic and antimony in seawater (NASS-5) and river water (SRLS-4) certified reference materials and bismuth in unalloyed copper (CuV 398, CuVI 399) standard reference materials by dispersive CVG-AFS.  相似文献   

16.
段旭川  王玉婧 《分析化学》2011,39(1):137-141
应用电感耦合等离子体原子发射光谱法研究了增强过渡及贵金属元素Au,Pt,Pd,Co,Zn和Mn的化学蒸气发生效率的两种方法.方法一是使用十一硼烷十四氢钠盐(NaB11H14)代替硼氢化钠(NaBH4)做还原剂,增加了反应物氢的浓度;方法二是在线加热NaBH_4和元素的反应溶液,增加了还原反应的速度.方法一的最佳反应条件...  相似文献   

17.
Recent progress in understanding the phase-dependent reactivity of halooxides and nitrosyl halides is outlined. Halooxide reactivity is represented by the photochemistry of chlorine dioxide (OClO) and dichlorine monoxide (ClOCl). The gas phase photochemical dynamics of OClO are contrasted with the dynamics in condensed environments. The role of excited-state symmetry in defining the reaction dynamics and the observation of photoisomerization resulting in the production of ClOO are discussed. The current understanding of the excited-state reaction dynamics of ClOCl and evidence for photoisomerization of this species resulting in the production of ClClO are outlined. Finally, the photochemical reaction dynamics of the nitrosyl halide ClNO are presented. The main difference between the gas and condensed phase reaction dynamics of this species is that whereas photodissociation to form Cl and NO dominates the gas phase reaction dynamics, photoisomerization resulting in ClON production occurs to an appreciable extent in condensed environments. The observation of photoisomerization for OClO, ClOCl and ClNO suggests that this process is a general feature of the condensed phase reaction dynamics for smaller halooxides and nitrosyl halides. Finally, future areas for study in both halooxide and nitrosyl halide photoreactivity are outlined.  相似文献   

18.
Quinones are a class of compounds of substantial toxicological and pharmacological interest. An ultrasensitive and highly selective chemiluminescence (CL) method was newly developed for the determination of quinones based on the utility of photochemically initiated luminol CL. The method involved ultraviolet (UV) irradiation of quinones to generate reactive oxygen species (ROS) through the unique photosensitization reaction accompanied with the photolytical generation of 3,6-dihydroxyphthalic acid (DHPA) from quinones. The photoproducts were detected by luminol CL reaction. Interestingly, it was noticed that DHPA had enhancement effect for the luminol CL. The generation of the enhancer (DHPA) in association with the oxidant (ROS) in the photochemical reaction greatly increases the sensitivity and selectivity of the proposed luminol CL method. In order to elucidate the type of ROS produced by the photosensitizaion reaction in relation to the proposed CL reaction, we investigated the quenching effect of selective ROS scavengers in the luminol CL. Although several ROS were generated, superoxide anion was the most effective ROS for the generated CL. Moreover, the enhancement mechanism of DHPA for luminol CL was confirmed. The enhancement was found to be through the formation of stabilized semiquinone anion radical that provided long-lived CL. The generation of the semiquinone radical was confirmed by electron spin resonance technique. Furthermore, we developed an HPLC method with on-line photochemical reaction followed by the proposed CL detection for the determination of four quinones. A luminol analogue, L-012, was used for its high sensitivity. The detection limits for quinones obtained with the proposed method (S/N = 3) were in the range 1.5–24 fmol that were 10–1000 times more sensitive compared with the previous methods. Finally, the developed HPLC-CL system was successfully applied for the determination of quinones in airborne particulate samples collected at Nagasaki city.  相似文献   

19.
以紫外光诱导化学蒸气发生装置作为原子荧光光谱仪的进样系统,建立了光化学蒸气发生原子荧光光谱法测定中药材丹参中总硒含量的分析方法。研究了试剂浓度、光化学蒸气反应管等因素对硒化学蒸气发生效率的影响。仪器对硒的检出限为6.60 ng/mL,精密度(RSD)为0.6%(n=10),回收率为98%~107%。  相似文献   

20.
Speciation studies are much more important than total element determination because toxicity of many elements depends on their chemical forms. Nobody can claim that a foodstuff is very dangerous to eat by determining total arsenic due to the possibility that the arsenic could be present in non-toxic forms. Hence, speciation studies are crucial in any matrix relevant to human beings.Trace-element speciation requires sufficiently sensitive procedures to monitor each species at trace levels. One way to increase the sensitivity for elements forming volatile species is coupling high-performance liquid chromatography (HPLC) with chemical-vapor generation (CVG). This review aims to highlight not only development of HPLC-CVG techniques for ultratrace-elemental speciation in a variety of matrices but also their application. In addition, we discuss the advantages and the disadvantages of these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号