首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The reactions of copper(I) iodide with pyridine-2-thione (2-SC(5)H(4)NH) in the presence of a series of diphosphane ligands, Ph(2)P[bond]X[bond]Ph(2)P [X = [bond](CH(2))(m)[bond], m = 1(dppm), 2 (dppe), 3 (dppp), 4 (dppb); [bond]CH[double bond]CH[bond] (dppen)], yielded an iodo-bridged hexanuclear Cu(I) linear polymer, [Cu(6)(mu(3)-SC(5)H(4)NH)(4)(mu(2)-SC(5)H(4)NH)(2)(I(4))(mu-I)(2)-](n).2nCH(3)CN (1). A similar reaction with 1,2-bis(diphenylphosphino)ethane (dppe) and 2-SC(5)H(4)NH yielded a triangular cluster, Cu(3)I(3)(dppe)(3)(2-SC(5)H(4)NH), 2. In the chain polymer 1, three Cu(I) iodide and three 2-SC(5)H(4)NH ligands combined via bridging S donor atoms to form a boat-shaped trinuclear Cu(3)S(3)I(3) core, and two such cores combined in an inverse manner via four S-donor atoms (mu(3)-S) to form a centrosymmetric hexanuclear repeat unit, Cu(6)S(6)I(4)(mu-I)(2-), which finally formed the iodo-bridged infinite linear chain polymer 1. Linear chains are separated by the nonbonded acetonitrile molecules. Polymer 1 is the first such example of a linear chain formed by the hexanuclear Cu(6)S(6)I(6) core in copper chemistry as well as in metal-heterocyclic thioamide chemistry. In addition, it has the first mu(3)-S mode of neutral pyridine-2-thione ever reported. In the moiety Cu(3)I(3)(dppe)(3) of 2, two copper(I) centers are bridged by the iodide ligands forming a Cu(mu-I)(2)Cu core, while a third copper(I) center is terminally bonded to another iodide ligand. Polymer 2 is also rare, and the first triangular cluster of Cu(I) with an heterocyclic thioamide.  相似文献   

2.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

3.
The new stable low oxidation state arsenic(I) iodide reagent [(dppe)As][I] (dppe = 1,2-bis(diphenylphosphino)ethane) exhibits chemistry that is considerably different from its AsIII analogues. While [(dppe)As][I] is not crystalline, the crystal structure of the derivative salt [(dppe)As][(dppe)As2I7] is reported and is compared to that of [(dppe)As]2[SnCl6] x 2CH2Cl2. The air oxidation of [(dppe)As][I] produces crystals of the salt [Ph2P(O)CH2CH2P(OH)Ph2]2[As6I8] x 2CH2Cl2 and suggests that, in contrast to previous studies, the reaction of the univalent arsenic iodide salt with certain oxidants results in the oxidation of the dppe ligand and the release of "AsI-I" fragments that oligomerize to form AsI clusters. Such reactivity is confirmed by the reaction of 6[(dppe)As][I] with 12Me3NO and 2[PPh4][I] to produce [PPh4]2[As6I8] and 6dppeO2. The reactivity is rationalized using density functional theory calculations.  相似文献   

4.
Extended-chain complexes containing multiple transition metal centres linked by conjugated micro-cyanodiazenido(1-) ligands [N=N-C[triple bond, length as m-dash]N]- have been obtained by reaction of trans-[BrW(dppe)2(N2CN)], , [dppe=1,2-bis(diphenylphosphino)ethane] with dirhodium(II) tetra-acetate, bis(benzonitrile)palladium(II) dichloride, and bis(aqua)M(II) bis(hexafluoroacetylacetonate) (M=Mn, Ni, Cu, Zn): stronger Lewis acids such as tetrakis(acetonitrile)palladium(II) tetrafluoroborate and boron trifluoride promote hydrolysis of complex , leading to the isolation of a novel carbamoylhydrazido(2-) complex, trans-[BrW(dppe)2(N2HC=ONH2)]+[BF4]-.  相似文献   

5.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

6.
A novel complex [Cu(acac)(dppe)]n (1) [acac = acetylacetone; dppe = 1,2-bis(diphenylphosphino)ethane] was obtained by solution reactions and structurally characterized by X-ray diffraction. The crystal structure analysis indicates that the title complex is characteristic of a polymeric chain formed by the dppe ligands bridging neighboring copper centers. The copper atom is in a distorted tetrahedral geometry. Photoluminescent investigation reveals that the title complex displays a strong emission in bluelight region.  相似文献   

7.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

8.
Reaction of copper(I) iodide with pyridine-2-thione (2-SC5H4NH) and 1,2-bis(diphenylphosphino)ethane (dppe) in a CH3CN-CHCl3 mixture yielded a triangular cluster, [Cu3I3(mu2-P,P-dppe)3 (eta1-SC5H4NH)], 1. Similar reaction with 2-SC5H4NH and a series of diphosphanes, Ph2P-X-Ph2P {X = -CH2- (dppm), -(CH2)3- (dppp), -(CH2)4- (dppb), -CH=CH- (dppen)}, gave a novel iodo-bridged hexanuclear Cu(I) linear polymer,{Cu6(mu3-SC5H4NH)4 (mu2-SC5H4NH)2 (I4)(mu-I)2-}n x 2nCH3CN, 2. Reactions of copper(I) iodide/copper(I) bromide with 1,3-imidazolidine-2-thione (SC3H6N2) in a CH3CN-CHCl3 mixture yielded hexanuclear Cu(I) linear chain polymers, [{Cu6(mu3-SC3H6N2)2 (mu2-SC3H6N2)4X2 (mu-X)4}n] (X = Br, 4; I, 5). In compound 1, two iodide atoms and one dppe form the dinuclear Cu(mu2-I)2 (mu2-dppe)Cu core, and two dppe ligands bridge this core with the third Cu(I) center coordinated to 2-SC5H4NH via the S atom. The chain polymer 2 has a centrosymmetric hexanuclear central core, Cu6S6I4 (mu-I)2--, formed by dimerization of six-membered trinuclear motifs, Cu3(mu2-SC3H6N2)3I3 via (mu3-S) bonding modes of the thione ligand, and has four terminal and two bridging iodine atoms in trans-orientations. Linear chains are separated by the nonbonded acetonitrile molecules. In 4 and 5, three copper(I) bromide or copper(I) iodide moieties and three SC3H6N2 ligands combined via bridging S donor atoms to form the six-membered trinuclear Cu3(mu2-SC3H6N2)3I3 cores which polymerized via S and X atoms in a side-on fashion to form linear chain polymers, [{Cu6(mu3-SC3H6N2)2 (mu2-SC3H6N2)4X2(mu-X)4}n]. The (mu3-S) modes of bonding of neutral heterocyclic thioamides are first examples, as are trinuclear cluster and linear polymers rare examples in copper chemistry.  相似文献   

9.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

10.
Reactions of [MCl2(L-L)], M = Pt, Pd; L-L = bis(diphenylphosphino)methane (dppm) or bis(diphenylphosphino)ethane (dppe), with NaC5H4SN in a 1 : 2 molar ratio lead to mononuclear species [M(S-C5H4SN)2(P-P)], M = Pt; L-L = dppm (1) or dppe (2) and M = Pd; L-L = dppe (3), as well as to the dinuclear [Pd2(micro2-S,N-C5H4SN)(micro2-kappa2S-C5H4SN)(micro2-dppm)(S-C5H4SN)2] (4). In contrast, reaction of [MCl2(dppm)] with NaC5H4SN in a 1 : 1 molar ratio leads to [Pd2(micro2-S,N-C5H4SN)3(micro2-dppm)]Cl (5) and trans-[Pt(S-C5H4SN)2(PPh2Me)2] (6) respectively. The latter is formed in low yield by cleavage of the dppm ligand. The dinuclear derivatives 4 and 5 present an A-frame and lantern structure, respectively. The former showing three different co-ordination modes in the same molecule with a short Pd-Pd distance of 2.9583 (9) A and the latter with three bridging S,N thionate ligands showing a shorter Pd-Pd distance of 2.7291 (13) A. Both distances could be imposed by the bridging ligands or point to some sort of metal-metal interaction.  相似文献   

11.
bis(alkoxycarbonyl) complexes of platinum of the type [Pt(COOR)2L] [L = 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), l,4-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) or 1,2-bis-(diphenylphosphino)benzene (dpb); R = CH3, C6H5 or C2H5] were obtained by reaction of [PtCl2L] with carbon monoxide and alkoxides. Palladium and nickel complexes gave only carbonyl complexes of the type [M(CO)L] or [M(CO)2L]. The new complexes were characterized by chemical and spectroscopic means. The X-ray structure of [Pt(COOCH3)2(dppf] · CH3OH is also reported. The reactivity of some alkoxycarbonyl complexes was also investigated.  相似文献   

12.
Journal of Structural Chemistry - In the reaction of (Et4N)2[W2S4Cl4] with 1,2-bis(diphenylphosphino)ethane in acetonitrile a new binuclear complex of tungsten(V) [W2S4Cl2(dppe)2]·2CH3CN is...  相似文献   

13.
The organoiridium derivatives HIr(cod)(P-P) (cod=1,5-cyclooctadiene; P-P=dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane), dppp (1,3-bis(diphenylphosphino)propane), dppb (1,4-bis(diphenylphosphino)butane)) catalyze the regioselective cyclotrimerization of phenylacetylene as well as of its derivatives p-CH3OC6H4CCH and p-CF3C6H4CCH. The catalytic activity of the precursors as well as the selectivity towards formation of the 1,2,4-triarylbenzenes (up to 100%) are influenced by the diphosphine, and both increase by decreasing the size of the phosphine-iridium chelate ring.  相似文献   

14.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

15.
严冰  吴涛  李贞  李丹 《无机化学学报》2006,22(8):1499-1502
A blue photoluminescent coordination polymer [Ag4Cl4(dppe)2]n has been prepared solvothermally and characterized structurally. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of tetragonal, space group I41/a, a=b=1.936 03(6) nm, c=1.465 63(8) nm, V=5.493 5(4) nm3, Z=4, Dcalcd=1.657 Mg·m-3, μ=1.749 mm-1. Reflections collected: 17 147, independent reflections: 3 247, Rint=0.021 1. Final R indices [I> 2σ(I)]: R1=0.044 8, wR2=0.111 0. The structure of [Ag4Cl4(dppe)2]n is a 3D-diamond highly symmetrical polymeric network containing Ag4Cl4 cubane-like clusters connected by 1,2-bis(diphenylphosphino)ethane (dppe). Each Ag4Cl4 cluster is composed of four silver and four chlorine atoms situated at alternate vertexes of a highly distorted cube with each silver atom being further coordinated to one phosphorus atom from a dppe ligand. The stripping of chloride ions from CHCl3 provides the source for chlorine in the formation of Ag(Ⅰ) clusters. In addition, the emission spectrum of the complex 1 in solid state has been studied. CCDC: 288080.  相似文献   

16.
Redox addition of the Pd-Pd bond in [Pd(2)Cl(2)(dppm)(2)] across S-S or Se-Se bond in [Pt(X(4)-kappa(2)X(1),X(4))(P-P)] (X = S, Se; P-P = dppe or 2 x PPh(3); dppm = bis(diphenylphosphino)methane, dppe = bis(diphenylphosphino)ethane) leads to the isolation of [PtPd(2)(mu(3)-X)(2)(P-P)(dppmX-kappa(2)X,P(4))(2)](2+) and represents an atom-economy process that converts chalcogen-rich complexes to heterometallic chalcogenide aggregates. Activation of the [PtX(4)] ring is achieved by tetrachalcogenide reduction and dual oxidation of palladium and phosphine.  相似文献   

17.
Six heteroatomic complexes of diphenylphosphine derivatives with heavy metals (Ni, Pd, Pt, Mo and W) were prepared and subjected to elemental spectral and thermal analyses. The different physicochemical methods used indicated the formulae [NiCl2(dppm)], [PtCl2(dppm)] and [Mo(CO)4(dppm)] (dppm=bis(diphenylphosphine)methane, the dppm in these complexes behaving as a bidentate ligand), [Pd(CN)2(dppm)2] (in which the dppm behaves as a monodentate ligand), [W(CO)4(dppe)2] and [Mo(CO)4(dppe)2] (dppe=1,1-bis(diphenylphosphine)ethene, the dppe in these complexes behaving as a bidentate ligand). The thermal analyses (DTA and TG) confirmed these structures. The results of spectral and thermal analyses were compared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Using a stroboscopic technique, in which the molecule is repeatedly excited and the structural change is probed more than 5000 times per second immediately after excitation, we performed a 16 K time-resolved single-crystal study of the microsecond lifetime triplet state of the Cu(I)phenanthroline derivative[Cu(I)(dmp)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane). The geometry changes on excitation differ for the two symmetry-independent molecules, but are in the same direction as calculated for an isolated reference molecule, although the flattening distortion in the crystal is significantly smaller, implying that the reorganization energy is greatly affected by the confining medium.  相似文献   

19.
The synthesis and structural characterization of dicationic selenium and tellurium analogues of the carbodiphosphorane and triphosphenium families of compounds are reported. These complexes, [Ch(dppe)][OTf](2) [Ch = Se, Te; dppe = 1,2-bis(diphenylphosphino)ethane; OTf = trifluoromethanesulfonate], are formed using [Ch](2+) reagents via a ligand-exchange protocol and represent extremely rare examples of homoleptic pnictogen → chalcogen coordination complexes. The corresponding arsenic compounds were also prepared, [Ch(dpAse)][OTf](2) [Ch = Se, Te; dpAse = 1,2-bis(diphenylarsino)ethane], exhibiting the first instance of an arsenic → chalcogen dative bond. The electronic structures of these unique compounds were determined and compared to previously reported chalcogen dications.  相似文献   

20.
High catalytic activities for the selective reduction of aromatic nitro compounds to the corresponding amines under the mild reaction conditions of room temperature and 1 atm of CO were found to be exhibited by chelatephosphine (dppe, dppm, etc.; dppe: 1,2-bis(diphenylphosphino)ethane, dppm: bis(diphenylphosphino)methane)-added rhodium and ruthenium carbonyl complexes in a 5 N NAOH aqueous solution. The reduction proceeded not only with high catalytic activities, but also with remarkably high nitro group selectivities; for example, 1-nitroanthraquinone afforded 1-aminoanthraquinone without other unsaturated groups (such as CO) being reduced. PR3-added Rh(CO)2(acac) complexes (PR3: PEtPh2, PEt2Ph, PEt3, etc.; acac: acetylacetonato) in diglyme in a 5 N NaOH aqueous solution were also found to show significant catalytic activities for the reduction of aromatic nitro compounds under mild CO/H2O conditions. Both electronic and steric factors of phosphine ligands are important in making this reaction proceed at such remarkable rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号