首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For 1 ⩽kn − 1 and 0 ⩽qk − 1, solutions are obtained for the boundary value problem, (−1)nk = f(x,y), y(i)=0, 0⩽ik − 1, and y(i) = 0, qjnk + q − 1, where f(x,y) is singular at y = 0. An application is made of a fixed point theorem for operators that are decreasing with respect to a cone.  相似文献   

2.
Пустьf - действительн означная конечная фу нкция на конечном отрезке Δ=[а, b] вещественной оси, |Δ|=b?a, M(f) = sup {|f(x)|: x∈Δ}, Rn(f,p Δ) = inf∥f?r∥Lp(Δ) (0 < p < ∞), где нижняя грань бере тся по всем рациональ ным функциямr порядка не вышеп, K(М, Δ) класс всех выпуклых на отре зке Δ функцийf, для кот орыхM(f)≦M. Теорема.При любом вещ ественном р, 0<р<∞ и вс ехп=1, 2, ... sup {Rn(f, p, Δ):f∈K(M, Δ)} ≦ C(p)M|Δ|1/pn?2,где С(р) - величина, зави сящая лишь от р.  相似文献   

3.
In this paper, we consider the partial difference equation with continuous variables of the form P1z(x + a, y + b) + p2z (x + a, y) + p3z (x, y + b) − p4z (x, y) + P (x, y) z (xτ, yσ) = 0, where P ϵ C(R+ × R+, R+ − {0}), a, b, τ, σ are real numbers and pi (i = 1, 2, 3, 4) are nonnegative constants. Some sufficient conditions for all solutions of this equation to be oscillatory are obtained.  相似文献   

4.
5.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

6.
Let G be a permutation group acting on a set with N elements such that every permutation with more than m fixed points is the identity. It is easy to verify that |G| divides N(N − 1) ··· (Nm). We show that if gcd(|G|, m!) = 1, then |G| divides (Ni)(Nj) for some i and j satisfying 0 ≤ i < jm. We use this to show that any almost perfect 1-factorization of K2n has an automorphism group whose cardinality divides (2ni)(2nj) for some i and j with 0 ≤ i < j ≤ 2 as long as n is odd. An almost perfect 1-factorization (or APOF) is a 1-factorization in which the union of any three distinct 1-factors is connected. This result contrasts with an example of an APOF on K12 given by Cameron which has PSL(2, ℤ11) as its automorphism group [with cardinality 12(11)(5)]. When n is even and the automorphism group is solvable, we show that either G acts vertex transitively and n is a power of two, or |G| divides 2n − 2a for some integer a with 2a dividing 2n, or else |G| divides (2ni)(2nj) for some i and j with 0 ≤ i < j ≤ 2. We also give a number of structure results concerning these automorphism groups. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 355–380, 1998  相似文献   

7.
8.
Let Sn,n = 1, 2, …, denote the partial sums of integrable random variables. No assumptions about independence are made. Conditions for the finiteness of the moments of the first passage times N(c) = min {n: Sn>ca(n)}, where c ≥ 0and a(y) is a positive continuous function on [0, ∞), such that a(y) = o(y)as y → ∞, are given. With the further assumption that a(y) = yP,0 ≤ p < 1, a law of large numbers and the asymptotic behaviour of the moments when c → ∞ are obtained. The corresponding stopped sums are also studied.  相似文献   

9.
We find the exact value of the expression $$\varepsilon ^{(l,q)} {\mathbf{ }}(W^{(r,s)} ){\mathbf{ }}H^{w_1 ,w_2 } (G)) = \sup \{ ||f^{(l,q)} ( \cdot {\mathbf{ }}, \cdot ) - S_{1,1}^{(l,q)} (f;{\mathbf{ }} \cdot {\mathbf{ }}, \cdot )||_{C(G)} :f \in W^{(r,{\mathbf{ }}s)} H^{w_1 ,w_2 } (G)\} ,$$ , where? (l,q) (x,y)=? 1+q ?/?x l ?y q (l, q=0, 1, 1≤l+q≤2) andS 1,1(f; x, y) is a bilinear spline interpolatingf(x, y) in the nodes of the grid Δ mn m x ×Δ n y with Δ m x :x i =i/m (i=0, ..., m) and Δ n y :y j =j/n (j=0, ..., n). Here $(W^{(r,s)} ){\mathbf{ }}H^{w_1 ,w_2 } (G)$ is the class of functionsf(x, y) with continuous derivativesf (r,s)(x, y) (r, s=0, 1, 1≤r+s≤2) on the squareG=[0, 1]×[0, 1] and with the modulus of continuity satisfying the inequalityω(f (r,s);t, τ)≤ω 1 (t)+ω 2 (τ), whereω 1 (τ) andω 2 (τ) are the given moduli of continuity.  相似文献   

10.
We establish asymptotic representations as t → ω (ω ≤ + ∞) of a class of monotone solutions of the second-order differential equation y″ = f(t, y, y′), where f:[a,ω[× Δ Y0 × Δ Y1 is a continuous function asymptotically close on the considered class of solutions to a function of the form ±p(t)φ 0(y)φ 1(y′) with functions φ 0 and φ 1 regularly varying as yY 0 and y′ → Y 1. Here Δ Yi , i ∈ {0, 1}, is a one-sided neighborhood of Y i , and Y i is either zero or ±∞.  相似文献   

11.
Let D be an arbitrary skew field and K a central subfield of D. We prove that D can be embedded in a skew field Δ such that w(Δ)=Δ for every nonempty Lie word w on a set of variables y1,y2,.?.?. with coefficients in K; moreover, we have for the multiplicative group Δ* that v*)=Δ* for every nonempty word \(v=x_{1}^{\varepsilon_{1}}x_{2}^{\varepsilon_{2}}\ldots x_{n}^{\varepsilon_{n}}\) (?i=±1; i=1,2,.?.?.,n).  相似文献   

12.
Criteria are given to determine the oscillatory property of solutions of the nonlinear difference equation: Δdun + ∑i = 1mpinfi(un, Δun,…,Δd ? 1un) = 0, n = 0, 1, 2,…, where d is an arbitrary integer, generalizing results that have been obtained by B. Szmanda (J. Math. Anal. Appl.79 (1981), 90–95) for d = 2. Analogous results are given for the differential equation: u(d) + ∑i = 1mpi(t)fi(u, u′,…, u(d ? 1)) = 0, t ? t0, which coincide with the criteria given by 2., 3., 599–602) and 4., 5., 6., 715–719) for the case m = 1.  相似文献   

13.
Let xN,i(n) denote the number of partitions of n with difference at least N and minimal component at least i, and yM,j(n) the number of partitions of n into parts which are . If N is even and i is co-prime with N+2i+1, we prove that
xN,i(n)?yN+2i+1,i(n)  相似文献   

14.
In this paper, we study integral operators of the form Tαf(x)=∫Rn|x-A1y|-α1 ··· |x-Amy|-αmf(y)dy,where Ai are certain invertible matrices, αi 0, 1 ≤ i ≤ m, α1 + ··· + αm = n-α, 0 ≤α n. For 1/q = 1/p-α/n , we obtain the Lp (Rn, wp)-Lq(Rn, wq) boundedness for weights w in A(p, q) satisfying that there exists c 0 such that w(Aix) ≤ cw(x), a.e. x ∈ Rn , 1 ≤ i ≤ m.Moreover, we obtain theappropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality. We also give a Coifman type estimate for these operators.  相似文献   

15.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

16.
In this paper we prove that given certain convex domains Δ on the plane, ε>0, andfC(Δ) such thatf=0 on θ2Δ={(θ2 x2 y):(x,y)?Δ} (0<θ<1), a polynomialp(x, y) of the form $$p(x,y) = \sum\limits_{\theta n \leqslant k + l \leqslant n} {a_{kl} x^k y^l }$$ exists such that ∥f?p C(Δ) ≤ε. The admissible convex domains include triangles and parallelograms with a vertex at the origin and sections of unit disk.  相似文献   

17.
Suppose that a continuous 2π-periodic function f on the real axis ? changes its monotonicity at different ordered fixed points y i ∈ [?π,π), i = 1, …, 2s, s ∈ ?. In other words, there is a set Y: = {y i } i∈? of points y i = y i+2s + 2π on ? such that f is nondecreasing on [y i ,y i?1] if i is odd and not increasing if i is even. For each nN(Y), we construct a trigonometric polynomial P n of order ≤ n changing its monotonicity at the same points y i Y as f and such that $$ \parallel f - P_n \parallel \leqslant c(s) \omega _2 \left( {f,\frac{\pi } {n}} \right), $$ where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s, ω2(f,·) is the modulus of continuity of second order of the function f, and ∥ · ∥ is the max-norm.  相似文献   

18.
Given a periodic Tchebycheff System {yi}i = 02n it is proved that there exist two functions y2n + 1, y2n + 2, such that also the system {yi}i = 02n + 2 is a periodic T-System.  相似文献   

19.
Let p be an odd prime number such that p − 1 = 2em for some odd m and e ≥ 2. In this article, by using the special linear fractional group PSL(2, p), for each i, 1 ≤ ie, except particular cases, we construct a 2-design with parameters v = p + 1, k = (p − 1)/2i + 1 and λ = ((p − 1)/2i+1)(p − 1)/2 = k(p − 1)/2, and in the case i = e we show that some of these 2-designs are 3-designs. Likewise, by using the linear fractional group PGL(2,p) we construct an infinite family of 3-designs with the same v k and λ = k(k − 2). These supplement a part of [4], in which we gave an infinite family of 3-designs with parameters v = q + 1, k = (q + 1)/2 = (q − 1)/2 + 1 and λ = (q + 1)(q − 3)/8 = k(k − 2)/2, where q is a prime power such that q − 1 = 2m for some odd m and q > 7. Some of the designs given in this article and in [4] fill in a few blanks in the table of Chee, Colbourn, and Kreher [2]. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
Suppose that a continuous 2π-periodic function f on the real axis ? changes its monotonicity at different ordered fixed points y i ∈ [? π, π), i = 1, …, 2s, s ∈ ?. In other words, there is a set Y:= {y i } i∈? of points y i = y i+2s + 2π on ? such that, on [y i , y i?1], f is nondecreasing if i is odd and nonincreasing if i is even. For each nN(Y), we construct a trigonometric polynomial P n of order ≤ n changing its monotonicity at the same points y i Y as f and such that $$ \left\| {f - P_n } \right\| \leqslant c\left( s \right)\omega _2 \left( {f,\frac{\pi } {n}} \right), $$ where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s, ω 2(f, ·) is the modulus of continuity of second order of the function f, and ∥ · ∥ is the max-norm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号