首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We consider a random walk in random scenery {Xn=η(S0)+?+η(Sn),nN}, where a centered walk {Sn,nN} is independent of the scenery {η(x),xZd}, consisting of symmetric i.i.d. with tail distribution P(η(x)>t)∼exp(−cαtα), with 1?α<d/2. We study the probability, when averaged over both randomness, that {Xn>ny} for y>0, and n large. In this note, we show that the large deviation estimate is of order exp(−ca(ny)), with a=α/(α+1).  相似文献   

2.
Let (Xn)n?N be a sequence of real, independent, not necessarily identically distributed random variables (r.v.) with distribution functions FXn, and Sn = Σi=1nXi. The authors present limit theorems together with convergence rates for the normalized sums ?(n)Sn, where ?: NR+, ?(n) → 0, n → ∞, towards appropriate limiting r.v. X, the convergence being taken in the weak (star) sense. Thus higher order estimates are given for the expression ∝Rf(x) d[F?(n)Sn(x) ? FX(x)] which depend upon the normalizing function ?, decomposability properties of X and smoothness properties of the function f under consideration. The general theorems of this unified approach subsume O- and o-higher order error estimates based upon assumptions on associated moments. These results are also extended to multi-dimensional random vectors.  相似文献   

3.
Convergence of weighted sums of tight random elements {Vn} (in a separable Banach space) which have zero expected values and uniformly bounded rth moments (r > 1) is obtained. In particular, if {ank} is a Toeplitz sequence of real numbers, then | Σk=1ankf(Vk)| → 0 in probability for each continuous linear functional f if and only if 6Σk=1ankVk 6→ 0 in probability. When the random elements are independent and max1≤k≤n | ank | = O(n?8) for some 0 < 1s < r ? 1, then |Σk=1ankVk 6→ 0 with probability 1. These results yield laws of large numbers without assuming geometric conditions on the Banach space. Finally, these results can be extended to random elements in certain Fréchet spaces.  相似文献   

4.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

5.
Let FX,Y(x,y) be a bivariate distribution function and Pn(x), Qm(y), n, m = 0, 1, 2,…, the orthonormal polynomials of the two marginal distributions FX(x) and FY(y), respectively. Some necessary conditions are derived for the co-efficients cn, n = 0, 1, 2,…, if the conditional expectation E[Pn(X) ∥ Y] = cnQn(Y) holds for n = 0, 1, 2,…. Several examples are given to show the application of these necessary conditions.  相似文献   

6.
We consider a real random walk Sn=X1+...+Xn attracted (without centering) to the normal law: this means that for a suitable norming sequence an we have the weak convergence Sn/an⇒ϕ(x)dx, ϕ(x) being the standard normal density. A local refinement of this convergence is provided by Gnedenko's and Stone's Local Limit Theorems, in the lattice and nonlattice case respectively. Now let denote the event (S1>0,...,Sn>0) and let Sn+ denote the random variable Sn conditioned on : it is known that Sn+/an ↠ ϕ+(x) dx, where ϕ+(x):=x exp (−x2/2)1(x≥0). What we establish in this paper is an equivalent of Gnedenko's and Stone's Local Limit Theorems for this weak convergence. We also consider the particular case when X1 has an absolutely continuous law: in this case the uniform convergence of the density of Sn+/an towards ϕ+(x) holds under a standard additional hypothesis, in analogy to the classical case. We finally discuss an application of our main results to the asymptotic behavior of the joint renewal measure of the ladder variables process. Unlike the classical proofs of the LLT, we make no use of characteristic functions: our techniques are rather taken from the so–called Fluctuation Theory for random walks.  相似文献   

7.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

8.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

9.
The finite generators of Abelian integral are obtained, where Γh is a family of closed ovals defined by H(x,y)=x2+y2+ax4+bx2y2+cy4=h, hΣ, ac(4acb2)≠0, Σ=(0,h1) is the open interval on which Γh is defined, f(x,y), g(x,y) are real polynomials in x and y with degree 2n+1 (n?2). And an upper bound of the number of zeros of Abelian integral I(h) is given by its algebraic structure for a special case a>0, b=0, c=1.  相似文献   

10.
Let Rn be the range of a random sample X1,…,Xn of exponential random variables with hazard rate λ. Let Sn be the range of another collection Y1,…,Yn of mutually independent exponential random variables with hazard rates λ1,…,λn whose average is λ. Finally, let r and s denote the reversed hazard rates of Rn and Sn, respectively. It is shown here that the mapping t?s(t)/r(t) is increasing on (0,) and that as a result, Rn=X(n)X(1) is smaller than Sn=Y(n)Y(1) in the likelihood ratio ordering as well as in the dispersive ordering. As a further consequence of this fact, X(n) is seen to be more stochastically increasing in X(1) than Y(n) is in Y(1). In other words, the pair (X(1),X(n)) is more dependent than the pair (Y(1),Y(n)) in the monotone regression dependence ordering. The latter finding extends readily to the more general context where X1,…,Xn form a random sample from a continuous distribution while Y1,…,Yn are mutually independent lifetimes with proportional hazard rates.  相似文献   

11.
Let X1, X2, . . . be i.i.d. random variables, and set Sn=X1+ . . . +Xn. Several authors proved convergence of series of the type f(ɛ)=∑ncnP(|Sn|>ɛan),ɛ>α, under necessary and sufficient conditions. We show that under the same conditions, in fact i.e. the finiteness of ∑ncnP(|Sn|>ɛan),ɛ>α, is equivalent to the convergence of the double sum ∑kncnP(|Sn|>kan). Two exceptional series required deriving necessary and sufficient conditions for E[supn|Sn|(logn)η/n]<∞,0≤η≤1.  相似文献   

12.
13.
This paper deals with the nonlinear two point boundary value problem y″ = f(x, y, y′, R1,…, Rn), x0 < x < xfS1y(x0) + S2y′(x0) = S3, S4y(xf) + S5y′(xf) = S6 where R1,…, Rn, S1,…, S6 are bounded continuous random variables. An approximate probability distribution function for y(x) is constructed by numerical integration of a set of related deterministic problems. Two distinct methods are described, and in each case convergence of the approximate distribution function to the actual distribution function is established. Primary attention is placed on problems with two random variables, but various generalizations are noted. As an example, a nonlinear one-dimensional heat conduction problem containing one or two random variables is studied in some detail.  相似文献   

14.
Let {xn} be a sequence of real numbers and let a(n) be a sequence of positive real numbers, with A(N) = Σn=1Na(n). Tsuji has defined a notion of a(n)-uniform distribution mod 1 which is related to the problem of determining those real numbers t0 for which A(N)?1 Σn=1Na(n)e?it0xn → 0 as N → ∞. In case f(s) = Σn=1a(n)e?sxn, s = σ + it, is analytic in the right half-plane 0 < σ, and satisfies a certain smoothness condition as σ → 0 +, we show that f(σ)?1f(σ + it0) → 0 as σ → 0 + if and only if A(N)?1 Σn=1Na(n)e?it0xn → 0 as N → ∞.  相似文献   

15.
Let Sn be the sum of n i.i.d.r.v. and let 1(-∞,x)(·) be the indicator function of the interval (-∞, x). Then the sequence 1(-∞, x)(Sn/√n) does not converge for any x. Likewise the arithmetic means of this sequence converge only with probability zero. But the logarithmic means converge with probability one to the standard normal distribution Ø(x). Then for any bounded and a.e. continuous function a(y) the logarithmic means of a(Sn/√n) converge a.s. to a = ∫a(y)dØ(y). The arithmetic means of a(Snk/√n) converge to the same limit a for all subsequences nk = [ck], c > 1.  相似文献   

16.
Let S(n, k, v) denote the number of vectors (a0,…, an?1) with nonnegative integer components that satisfy a0 + … + an ? 1 = k and Σi=0n?1iaiv (mod n). Two proofs are given for the relation S(n, k, v) = S(k, n, v). The first proof is by algebraic enumeration while the second is by combinatorial construction.  相似文献   

17.
A Markov process in Rn{xt} with transition function Pt is called semi-stable of order α>0 if for every a>0, Pt(x, E) = Pat(aax, aaE). Let ?t(ω)=∫t0|xs(ω)|-1/α ds, T(t) be its inverse and {yt}={xT(t)}.Theorem 1: {Yt} is a multiplicative invariant process; i.e., it has transition function qt satisfying qt(x,E)=qt(ax,aE) for all a > 0.Theorem 2: If {xt} is Feller, right continuous and uniformly stochastic continuous on a neighborhood of the origin, then {yt} is Feller.  相似文献   

18.
A basic integral equation of random fields estimation theory by the criterion of minimum of variance of the estimation error is of the form Rh = f, where and R(x, y) is a covariance function.The singular perturbation problem we study consists of finding the asymptotic behavior of the solution to the equation as 0.$$" align="middle" border="0"> The domain D can be an interval or a domain in Rn, n > 1. The class of operators R is defined by the class of their kernels R(x,y) which solve the equation Q(x, Dx)R(x, y) = P(x, Dx)δ(xy), where Q(x, Dx) and Px, Dx) are elliptic differential operators.  相似文献   

19.
Using recent results of Járai we show that the measurable solutions of the functional equationf(x 1 y 1,...,x n y n )f((1?x 1)(1?y 1),..., (1?x n )(1?y n ))=f(x 1(1?y 1),...,x n (1 ? (y n ))f(y 1(1?x 1),...,y n(1 ?x n )), wheref: (0, 1) n → (0, ∞) and 0<x i ,y i <1,i=1,...,n, are of the form $$f(x_1 ,...,x_n ) = c \exp \left( {\sum\limits_{i = 1}^n {a_i (x_1 - x_1^2 ))} \prod\limits_{i = 1}^n {x_i^{b_1 } ,} } \right.$$ wherec>0,a 1,...,a n andb 1,..., b are arbitrary real constants. This result enables one to characterize certain independence-preserving methods of aggregating probability distributions over four alternatives.  相似文献   

20.
We consider the set Σ(R,C) of all m×n matrices having 0-1 entries and prescribed row sums R=(r1,…,rm) and column sums C=(c1,…,cn). We prove an asymptotic estimate for the cardinality |Σ(R,C)| via the solution to a convex optimization problem. We show that if Σ(R,C) is sufficiently large, then a random matrix DΣ(R,C) sampled from the uniform probability measure in Σ(R,C) with high probability is close to a particular matrix Z=Z(R,C) that maximizes the sum of entropies of entries among all matrices with row sums R, column sums C and entries between 0 and 1. Similar results are obtained for 0-1 matrices with prescribed row and column sums and assigned zeros in some positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号