首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.  相似文献   

2.
The limit cycle oscillation (LCO) behaviors of control surface buzz in transonic flow are studied. Euler equations are employed to obtain the unsteady aerodynamic forces for Type B and Type C buzz analyses, and an all-movable control surface model, a wing/control surface model and a three-dimensional wing with a full-span control surface are adopted in the study. Aerodynamic and structural describing functions are used to deal with aerodynamic and structural nonlinearities, respectively. Then the buzz speed and buzz frequency are obtained by V-g method. The LCO behavior of the transonic control surface buzz system with linear structure exhibits subcritical or supercritical bifurcation at different Mach numbers. For nonlinear structural model with a free-play nonlinearity in the control surface deflection stiffness, the double LCO phenomenon is observed in certain range of flutter speed. The free-play nonlinearity changes the stability of LCOs at small amplitudes and turns the unstable LCO into a stable one. The LCO behavior is dominated by the aerodynamic nonlinearity for the case with large control surface oscillation amplitude but by the structural nonlinearity for the case with small amplitude. Good agreements between LCO behaviors obtained by the present method and available experimental data show that our study may help to explain the experimental observation in wind tunnel tests and to understand the physical mechanism of transonic control surface buzz.  相似文献   

3.
Aeroelasticity exists in airfoil with control surface freeplay, which may induce instability in an incompressible flow. In this paper, a nonlinear energy sink (NES) is used to suppress the aeroelasticity of an airfoil with a control surface. The freeplay and cubic nonlinearity in pitch are taken into account. The harmonic balance method is used to analytically determine the limit cycle oscillations (LCOs) amplitudes of the airfoil–NES system. Linear and nonlinear flutter speeds are detected from the airfoil with control surface freeplay. When NES is attached, both the linear flutter speed of airfoil without freeplay and the nonlinear flutter speed of airfoil with a freeplay are increased. Moreover, the LCO amplitude of airfoil is decreased due to NES. Then, the influences of NES parameters on the increase in flutter boundary of airfoil are carefully studied.  相似文献   

4.
Limit cycle oscillations (LCO) of wings on certain modern high performance aircraft have been observed in flight and in wind tunnel experiments. Whether the physical mechanism that gives rise to this behavior is a fluid or structural nonlinearity or both is still uncertain. It has been shown that an aeroelastic theoretical model with only a structural nonlinearity can predict accurately the limit cycle behavior at low subsonic flow for a plate-like wing at zero angle of attack. Changes in the limit cycle and flutter behavior as the angle of attack is varied have also been observed in flight. It has been suggested that this sensitivity to angle of attack is due to a fluid nonlinearity. In this investigation, we study the flutter and limit cycle behavior of a wing in low subsonic flow at small steady angles of attack. Experimental results are compared to those predicted using an aeroelastic theoretical model with only a structural nonlinearity. Results from both experiment and theory show a change in flutter speed as the steady angle of attack is varied. Also the LCO magnitude increased at a given velocity as the angle of attack was increased for both the experiment and theory. While not proving that the observed sensitivity to angle of attack of LCO in aircraft is due to a structural nonlinearity, the results do show that a change in the aeroelastic behavior at angles of attack can be caused by a structural nonlinearity as well as a fluid nonlinearity. In this paper, only structural nonlinearities are considered, but an extension to include aerodynamic nonlinearities would be very worthwhile.  相似文献   

5.
张伟伟  王博斌  叶正寅 《力学学报》2010,42(6):1023-1033
事先建立一个低阶的非线性、非定常气动力模型是开展非线性流场中气动弹性问题研究的一个捷径. 基于CFD方法, 通过计算结构在流场中自激振动的响应来获得系统的训练数据. 采用带输出反馈的循环RBF神经网络, 建立时域非线性气动力降阶模型.耦合结构运动方程和非线性气动力降阶模型, 采用杂交的线性多步方法计算结构在不同速度(动压)下的响应历程, 从而获得模型极限环随速度(动压)变化的特性. 两个典型的跨音速极限环型颤振算例表明, 基于气动力降阶模型方法的计算结果与直接CFD仿真结果吻合很好, 与后者相比其将计算效率提高了1~2个数量级.   相似文献   

6.
The flutter and limit cycle oscillation (LCO) behavior of a cropped delta wing are investigated using a newly developed computational aeroelastic solver. This computational model includes a well-validated Euler finite difference solver coupled to a high-fidelity finite element structural solver. The nonlinear structural model includes geometric nonlinearities which are modelled using a co-rotational formulation. The LCOs of the cropped delta wing are computed and the results are compared to previous computations and to experiment. Over the range of dynamic pressures for which experimental results are reported, the LCO magnitudes computed using the current model are comparable to those from a previous computation which used a lower-order von Karman structural model. However, for larger dynamic pressures, the current computational model and the model which used the von Karman theory start to differ significantly, with the current model predicting larger deflections for a given dynamic pressure. This results in a LCO curve which is in better qualitative agreement with experiment. Flow features which were present in the previous computational model such as a leading edge vortex and a shock wave are enhanced in the current model due to the prediction of larger deflections and rotations at the higher dynamic pressures.  相似文献   

7.
Current trends in the aircraft industry involve higher aspect-ratio wings made of lighter materials. These trends seek to reduce fuel emissions and increase flight efficiency by reducing drag to lift ratio and overall weight, respectively, of the aircraft. This results in reduced structural stiffness and coupling between the aeroelastic modes and flight dynamics. The flutter phenomenon is of particular interest for aeroelastic studies, and modeling post-flutter limit-cycle oscillations (LCO) is a challenging problem.Several studies have been developed to allow fast simulations of the highly non-linear aerodynamic situations, with leading-edge vortex modulation been a proved solution for modeling some forms of LCOs in airfoils. This article proposes a framework based on the 3D expansion of this method using strip theory and coupling with modal structural model for simulations of aerodynamic based non-linear phenomenon. A cantilevered flat plate is used for testing and validating the framework against wind-tunnel experiments and the industry standard approach. The results show that the proposed model is able to capture the main behavior of the LCO observed in the experiments and is directly comparable with the current approaches used at the industry. The framework allows for scalability and is also fast enough to provide time-based results in under two days for a desktop simulation, reducing the need of expensive cluster computations. Finally, since it is completely physics-based it allows for the engineer to get insights on the aerodynamic flow at a fraction of the cost of more detailed CFD models.  相似文献   

8.
The aeroelastic behavior of wing models is nonlinear particularly in the transonic speed range. The interaction between aerodynamic and structural forces can lead to the occurrence of Limit-Cycle Oscillations (LCOs). If in addition the wing model is flexible and backward swept, the kinematic coupling between bending and torsion makes the situation even more complex.In the research project “Aerostabil” such a wing was investigated, which was equipped with pressure transducers in three sections and accelerometers. The experiments were performed in the adaptive test section of the transonic wind tunnel TWG in Göttingen. Already Dietz et al. (2003) have reported about experimental details and preliminary results. Based on these data Bendiksen (2008) studied numerically LCO-flutter behavior using a very similar, theoretical model (G-wing) and Stickan et al. (2014) used the original data as a LCO flutter test case. The influence of flexibility on the steady aerodynamics of the wing was described in Schewe & Mai (2018). In this paper now the flutter experiments with the same flexible model were analyzed systematically in the transonic range 0.84 <Ma <0.89 and for six angles of attack from 1.46°to 2.7°. Maps of stability, LCO amplitudes and instantaneous pressure distributions are presented. It was found that unstable regions are islands, whose extent depends on the angle of attack. A LCO test case, already treated in the literature is examined in more detail. The analysis of the time functions showed that during LCO-flutter the motion induced aerodynamic sectional lift forces particularly in the outer wing are asymmetric and thus acting as amplitude limiter. The reason for the asymmetry lies in the shock/boundary layer interaction. The test case, containing the stages of built-up and the transition to the limit cycle provides an excellent opportunity for improving our knowledge about LCOs and for code validation purposes.  相似文献   

9.
This paper explores the dynamical response of a two-degree-of-freedom flat plate undergoing classical coupled-mode flutter in a wind tunnel. Tests are performed at low Reynolds number (Re~2.5×104), using an aeroelastic set-up that enables high amplitude pitch–plunge motion. Starting from rest and increasing the flow velocity, an unstable behaviour is first observed at the merging of frequencies: after a transient growth period the system enters a low amplitude limit-cycle oscillation regime with slowly varying amplitude. For higher velocity the system transitions to higher-amplitude and stable limit cycle oscillations (LCO) with amplitude increasing with the flow velocity. Decreasing the velocity from this upper LCO branch the system remains in stable self-sustained oscillations down to 85% of the critical velocity. Starting from rest, the system can also move toward a stable LCO regime if a significant perturbation is imposed. Those results show that both the flutter boundary and post-critical behaviour are affected by nonlinear mechanisms. They also suggest that nonlinear aerodynamic effects play a significant role.  相似文献   

10.
The authors investigate limit-cycle oscillations of a wing/store configuration. Unlike typical aeroelastic studies that are based upon a linearized form of the governing equations, herein full system nonlinearities are retained, and include transonic flow effects, coupled responses from the structure, and store-related kinematics and dynamics. Unsteady aerodynamic loads are modeled with the equations from transonic small disturbance theory. The structural dynamics for the cantilevered wing are modeled by the nonlinear equations of motion for a beam. The effects of general store-placement are modeled by the nonlinear equations of motion related to the position-induced nonlinear kinematics. Chordwise deformations of the wing surface, as well as pylon and store flexibility, are assumed negligible. Nonlinear responses are studied by examining bifurcation and related response characteristics using direct simulation. Particular attention is given to cases for which large-time, time-dependent behavior is dependent on initial conditions, as observed for some configurations in flight test. Comparisons of results in which selective nonlinearities are excluded indicate that the accurate prediction of nonlinear responses such as limit cycle oscillations (LCOs) may depend upon consideration of all nonlinearities related to the full system.  相似文献   

11.
一种风力机气动计算的全自由涡尾迹模型   总被引:1,自引:0,他引:1  
采用全自由方式建立风力机尾流场的涡尾迹模型,引入“虚拟周期”的概念,并发展一种自适应松弛因子方法,从而改善了自由尾迹迭代的稳定性,提高了迭代收敛速度。利用建立的自由涡尾迹模型,计算了风力机叶片的尾流场结构、气动性能及叶片载荷,并与实验结果进行了对比分析。结果表明,尖速比越大,自适应松弛因子方法对缩小模型计算时间越有效;全自由涡尾迹模型能准确给出风力机尾流场的结构,包括尾迹的扩张以及叶尖涡和叶根涡的产生、发展和耗散的过程,风轮扭矩与实验数据吻合;叶片载荷分布的计算结果在低风速下与实验值基本一致,但是在大风速下差别较大,说明需要一个准确的失速模型。  相似文献   

12.
Flight tests of modern high-performance fighter aircraft reveal the presence of limit cycle oscillation (LCO) responses for aircraft with certain external store configurations. Conventional linear aeroelastic analysis predicts flutter for conditions well beyond the operational envelope, yet these store-induced LCO responses occur at flight conditions within the flight envelope. Several nonlinear sources may be present, including aerodynamic effects such as flow separation and shock-boundary layer interaction and structural effects such as stiffening, damping, and system kinematics. No complete theory has been forwarded to accurately explain the mechanisms responsible. This research examines a two degree-of-freedom aeroelastic system which possesses kinematic nonlinearities and a strong nonlinearity in pitch stiffness. Nonlinear analysis techniques are used to gain insight into the characteristics of the behavior of the system. Numerical simulation is used to verify and validate the analysis. It is found that when system damping is low, the system clearly exhibits nonlinear interaction between aeroelastic modes. It is also shown that although certain applied forcing conditions may appear negligible, these same forces produce large amplitude LCOs under specific realizable circumstances.  相似文献   

13.
Nonlinear forced oscillations of a vertical continuous rotor with distributed mass are discussed. The restoring force of the rotor has geometric stiffening nonlinearity due to the extension of the rotor center line. The possibility of the occurrence of nonlinear forced oscillations at various subcritical speeds and the shapes of resonance curves at the major critical speeds and at some subcritical speeds are investigated theoretically. Consequently, the following is clarified: (a) the shape of resonance curves at the major critical speed becomes a hard spring type, and (b) among various kinds of nonlinear forced oscillations, only some special kinds of combination resonances have possibility of occurrence.  相似文献   

14.
Peng Li  Yiren Yang  Li Lu 《Meccanica》2014,49(12):2797-2815
This paper is aimed at presenting the nonlinear flutter peculiarities of a cantilevered plate with motion-limiting constraints in subsonic flow. A non-smooth free-play structural nonlinearity is considered to model the motion constraints. The governing nonlinear partial differential equation is discretized in space and time domains by using the Galerkin method. The equilibrium points and their stabilities are presented based on qualitative analysis and numerical studies. The system loses its stability by flutter and undergoes the limit cycle oscillations (LCOs) due to the nonlinearity. A heuristic analysis scheme based on the equivalent linearization method is applied to theoretical analysis of the LCOs. The Hopf and two-multiple semi-stable limit cycle bifurcation bifurcations are supercritical or subcritical, which is dependent on the location of the motion constraints. For some special cases the bifurcations are, interestingly, both supercritical and subcritical. The influence of varying parameters on the dynamics is discussed in detail. The results predicted by the analysis scheme are in good agreement with the numerical ones.  相似文献   

15.
The aeroelastic system of an airfoil-store configuration with a pitch freeplay is investigated using the precise integration method (PIM). According to the piecewise feature, the system is divided into three linear sub-systems. The sub-systems are separated by switching points related to the freeplay nonlinearity. The PIM is then employed to solve the sub-systems one by one. During the solution procedures, one challenge arises when determining the vibration state passing the switching points. A predictor-corrector algorithm is proposed based on the PIM to tackle this computational obstacle. Compared with exact solutions, the PIM can provide solutions to the precision in the order of magnitude of 10−12. Given the same step length, the PIM results are much more accurate than those of the Runge–Kutta (RK) method. Moreover, the RK method might falsely track limit cycle oscillations (LCOs), bifurcation charts or chaotic attractors; even the step length is chosen much smaller than that for the PIM. Bifurcations and LCOs are obtained and analyzed by the PIM in detail. Interestingly, it is found that multiple LCOs and chaotic attractors can exist simultaneously. With this magnitude of precision and efficiency, the PIM could become a solution technique with excellent potential for piecewise nonlinear aeroelastic systems.  相似文献   

16.
A typical airfoil section system with freeplay is investigated in the paper. The classic quasi-steady flow model is applied to calculate the aerodynamics, and a piecewise-stiffness model is adopted to characterize the nonlinearity of the airfoil section’s freeplay. There are two critical speeds in the system, i.e., a lower critical speed, above which the system might generate limit cycle oscillation, and an upper critical one, above which the system will flutter. Then a Poincaré map is constructed for the limit cycle oscillations by using piecewise-linear solutions with and without contact in the system. Through analysis of the Poincaré map, a series of equations which can determine the frequencies of period-1 limit cycle oscillations at any flight velocity are derived. Finally, these analytic results are compared to the results of numerical simulations, and a good agreement is found. The effects of freeplay value and contact stiffness ratio on the limit cycle oscillation are also analyzed through numerical simulations of the original system. Moreover, there exist multi-periods limit cycle oscillations and even complicated "chaotic" oscillations may occur, which are usually found in smooth nonlinear dynamic systems.  相似文献   

17.
This paper considers the dynamic stability of plane transverse oscillations of two cantilevered pipes interconnected along their outer radii and conveying different fluids with different flow speeds. Stability curves depicting the relation between the two flow speeds at the stability boundary are shown for a number of fluid-structure mass ratios. One fluid flow may dissipate energy delivered to the system by the other, if the speed of the first one is not too large. One pipe can thus be thought of as a stabilizer to the other, with the aim of increasing the critical speed of the primary flow. The stabilizing effect of one fluid on the other is clarified through considerations of an energy equation together with flutter oscillation shapes. The energy equation is also used to derive a relation between the two flow speeds and the phase speed of the flow-induced travelling bending wave.  相似文献   

18.
Recent results from flutter experiments of the supercritical airfoil NLR 7301 at flow conditions close to the transonic dip are presented. The airfoil was mounted with two degrees-of-freedom in an adaptive solid-wall wind tunnel, and boundary-layer transition was tripped. Flutter boundaries exhibiting a transonic dip were determined and limit-cycle oscillations (LCOs) were measured. The local energy exchange between the fluid and the structure during LCOs is examined and leads to the following findings: at supercritical Mach numbers below that of the transonic-dip minimum the presence of a shock-wave and its dynamics destabilizes the aeroelastic system such that the decreasing branch of the transonic dip develops. At higher Mach numbers the shock-wave motion has a stabilizing effect such that the flutter boundary increases to higher flutter-speed indices with increasing Mach number. Amplified oscillations near this branch of the flutter boundary obtain energy from the flow mainly due to the dynamics of a trailing-edge flow separation. A slight nonlinear amplitude dependency of the shock motion and a possibly occurring boundary-layer separation cause the amplitude limitation of the observed LCOs. The impact of the findings on the numerical simulation of these phenomena is discussed.  相似文献   

19.
This paper presents the dynamic response and stability of an asymmetric rotating shaft supported by a flexible base near the major critical speed and the secondary critical speed. In this system, the base is movable only in a direction transversal to the shaft. In the theoretical analysis, taking into account the effects of damping, the unstable vibrations near the major critical speed are mainly considered, and also the behavior of the forced oscillations near the major and secondary critical speeds is investigated. From the theoretical analysis, the unstable region is found to be divided into at most six subregions which depend on the mass of the base, the stiffness of the base, and the asymmetry of the shaft. In addition, the resonance curves near unstable subregions are calculated. It is found that there exist two shapes of resonance curves. In experiments, five types of response curves, which contained n unstable subregion (n = 1, 2, ¨, 5) near the major critical speed, were obtained by changing the mass of the base. It was ascertained that the theoretical results for the behavior near the major critical speed agreed quantitatively with the experimental results.  相似文献   

20.
This paper proposes an incremental method, which is based on the harmonic balance method, to analyze the nonlinear aeroelastic problem of an airfoil with an external store. The governing equations of limit cycle oscillations (LCOs) of the airfoil are deduced by the harmonic balancing procedure. Different from usual procedures, the harmonic balance equations are not solved directly but instead transformed into an equivalent minimization problem. The minimization problem is solved using the Levenberg–Marquardt method. Numerical examples show that the LCOs obtained by the presented method are in excellent agreement with numerical solutions. The bifurcation of the LCOs is further analyzed using the Floquet theory. It is found that the LCOs exhibit saddle-node, symmetry breaking and period-doubling bifurcations with the wind speed as control parameter. Compared with the harmonic balance method, the presented method has a wider convergence region and hence makes it easier to choose a proper initial guess for iterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号