首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Time-resolved step-scan Fourier infrared spectroscopy has been used to study the CO-bound cbb(3)-type cytochrome c oxidase from Pseudomonas stutzeri at room temperature. We observe a single band in the FTIR spectrum at 1956 cm(-1) (beta-form). The time-resolved data indicate that upon photolysis, CO is transferred from heme b(3) (nu(CO) = 1956 cm(-1)) to CuB (nu(CO) = 2064 cm(-1)). The decay of the 2065 cm(-1) peak (t(1/2) = 120 +/- 16 ms) and the development of the 1956 cm(-1) peak (t(1/2) = 144 +/- 8 ms ) suggest that formation of the Fe-CO complex is concurrent with the decay of the CuB-CO complex. The intensity ratio of the Fe-CO/CuB-CO (2.15) remains constant for all data points, and thus we conclude that no fraction of CO escapes the binuclear center at 293 K.  相似文献   

2.
Femtosecond vibrational coherence spectroscopy was used to investigate the low-frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (k(B)T = 200 cm(-1)) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here, we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants, and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm(-1) in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole-bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm(-1) in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230 cm(-1) that is broadened and up-shifted compared to the ν(Fe-His) of Rr-CooA (216 cm(-1)). We propose that the stronger Fe-His bond is related to the enhanced thermal stability of Ch-CooA and that there is a smaller (time dependent) tilt of the histidine ring with respect to the heme plane in Ch-CooA. The appearance of strong modes at ~48 cm(-1) in both the ferrous and CO-bound forms of Ch-CooA is consistent with coupling of the heme doming distortion to the photolysis reaction in both samples. Upon CO binding and protein activation, a heme mode near 112 ± 5 cm(-1) disappears, probably indicating a decreased heme saddling distortion. This reflects changes in the heme environment and geometry that must be associated with the conformational transition activating the DNA-binding domain. Protein-specific DNA binding to the CO-bound form of Ch-CooA was also investigated, and although the CO rebinding kinetics are significantly perturbed, there are negligible changes in the low-frequency vibrational spectrum of the heme.  相似文献   

3.
Nitrous oxide reductase (N2OR) catalyses the final step of bacterial denitrification, the two-electron reduction of nitrous oxide (N2O) to dinitrogen (N2). N2OR contains two metal centers; a binuclear copper center, CuA, that serves to receive electrons from soluble donors, and a tetranuclear copper-sulfide center, CuZ, at the active site. Stopped flow experiments at low ionic strengths reveal rapid electron transfer (kobs=150 s-1) between reduced horse heart (HH) cytochrome c and the CuA center in fully oxidized N2OR. When fully reduced N2OR was mixed with oxidized cytochrome c, a similar rate of electron transfer was recorded for the reverse reaction, followed by a much slower internal electron transfer from CuZ to CuA(kobs=0.1-0.4 s-1). The internal electron transfer process is likely to represent the rate-determining step in the catalytic cycle. Remarkably, in the absence of cytochrome c, fully reduced N2OR is inert towards its substrate, even though sufficient electrons are stored to initiate a single turnover. However, in the presence of reduced cytochrome c and N2O, a single turnover occurs after a lag-phase. We propose that a conformational change in N2OR is induced by its specific interaction with cytochrome c that in turn either permits electron transfer between CuA and CuZ or controls the rate of N2O decomposition at the active site.  相似文献   

4.
AHb1 is a hexacoordinated type 1 nonsymbiotic hemoglobin recently discovered in Arabidopsis thaliana. To gain insight into the ligand migration inside the protein, we studied the CO rebinding kinetics of AHb1 encapsulated in silica gels, in the presence of glycerol. The CO rebinding kinetics after nanosecond laser flash photolysis exhibits complex ligand migration patterns, consistent with the existence of discrete docking sites in which ligands can temporarily be stored before rebinding to the heme at different times. This finding may be of relevance to the physiological NO dioxygenase activity of this protein, which requires sequential binding of two substrates, NO and O2, to the heme.  相似文献   

5.
IR changes caused by photolysis of CO from the mixed valence form of bovine cytochrome c oxidase have been investigated over the pH/pD range 6-9.8. Band assignments were based on effects of H2O/D2O exchange and by comparisons with published IR data and crystallographic data. Changes arise both from CO photolysis and from subsequent reversed electron transfer from heme a3 to heme a. This reversed electron transfer is known to have pH-independent and, above pH 8, pH-dependent components. The pH-independent component is associated with a trough around the 1742 cm(-1) band attributable to one or more protonated carboxylic acids. Its peak position, but not extent, is pH-dependent, indicative of a titratable group with a pK of 8.2 whose acid form causes increased hydrogen bonding to the IR-detectable carboxylic group. A different protonatable group with pK above 9 controls the extent of the pH-dependent component. This phase is associated with perturbation of an arginine guanidinium that is most clearly observed as a trough at 1592 cm(-1) after H/D exchange. It is suggested that this group, probably Arg-438 that is in close contact with propionate groups of both hemes and already proposed to be of functional significance, lowers the energy of the transient charge-uncompensated electron-transfer intermediate by changing the charge distribution in response to heme-heme electron transfer. No other IR signature of a titratable group that controls the extent of the pH-dependent phase is present, and it most likely arises from a nonphysiological deprotonation of the proximal water ligand of ferric heme a3 at high pH that has been reported to exhibit a similar pK.  相似文献   

6.
Flash photolysis studies on the five-coordinate heme nitrosyl of Alcaligenes xylosoxidans cytochrome c' were carried out to investigate the ramifications of its proximal nitrosyl ligand on NO release. Delta absorbance spectra recorded 5 ms after photolysis indicate that approximately 5% of the photolyzed hemes are converted to a five-coordinate high spin ferrous state, revealing that reattachment of the endogenous His ligand is fast enough to trap some of the photolyzed heme. Analysis of NO rebinding suggests that the photolyzed ferrous protein is initially in a strained conformation, which relaxes on a millisecond time scale. The strained ferrous heme appears to contain a significantly labilized Fe-His bond, which allows direct second-order rebinding to the proximal face at high NO-concentrations. In contrast, the NO-binding properties of the relaxed conformation are similar to those previously observed in stopped-flow studies, which showed that a five-coordinate heme-nitrosyl is formed via a six-coordinate intermediate. The discovery of a rapid proximal His ligand reattachment to NO-dissociated heme reveals a novel "kinetic trap" mechanism for lowering the five-coordinate heme nitrosyl population in response to decreased ambient NO concentrations. Thus, NO dissociation from the five-coordinate heme nitrosyl, whether thermal or photochemical, is followed by rapid, and only slowly reversible, His reattachment which acts to kinetically trap the heme in its five-coordinate ferrous state. Because return to the five-coordinate heme nitrosyl requires two NO-dependent steps, the protein uses a kind of kinetic amplification of the thermodynamic dissociation that occurs in response to decreased NO concentrations. The implications of this "kinetic-trap" mechanism for NO release from soluble guanylate cyclase are discussed.  相似文献   

7.
The rebinding kinetics of CO to protoheme (FePPIX) in the presence and absence of a proximal imidazole ligand reveals the magnitude of the rebinding barrier associated with proximal histidine ligation. The ligation states of the heme under different solvent conditions are also investigated using both equilibrium and transient spectroscopy. In the absence of imidazole, a weak ligand (probably water) is bound on the proximal side of the FePPIX-CO adduct. When the heme is encapsulated in micelles of cetyltrimethylammonium bromide (CTAB), photolysis of FePPIX-CO induces a complicated set of proximal ligation changes. In contrast, the use of glycerol-water solutions leads to a simple two-state geminate kinetic response with rapid (10-100 ps) CO recombination and a geminate amplitude that can be controlled by adjusting the solvent viscosity. By comparing the rate of CO rebinding to protoheme in glycerol solution with and without a bound proximal imidazole ligand, we find the enthalpic contribution to the proximal rebinding barrier, H(p), to be 11 +/- 2 kJ/mol. Further comparison of the CO rebinding rate of the imidazole bound protoheme with the analogous rate in myoglobin (Mb) leads to a determination of the difference in their distal free energy barriers: DeltaG(D) approximately 12 +/- 1 kJ/mol. Estimates of the entropic contributions, due to the ligand accessible volumes in the distal pocket and the xenon-4 cavity of myoglobin ( approximately 3 kJ/mol), then lead to a distal pocket enthalpic barrier of H(D) approximately 9 +/- 2 kJ/mol. These results agree well with the predictions of a simple model and with previous independent room-temperature measurements of the enthalpic MbCO rebinding barrier (18 +/- 2 kJ/mol).  相似文献   

8.
以细胞色素c(Cyt c)为模型蛋白,采用表面增强红外吸收光谱监测了三明治结构所吸附的纳米金对氧化还原诱导的Cyt c表面增强红外差谱的改变.研究表明,在单层Cyt c分子表面组装纳米金,使得血红素的红外差谱特征峰明显增强,这归因于纳米金和血红素之间的电子传递.纳米金与Cyt c氧化还原活性中心血红素的相互作用加速了蛋白质的电子传递.这为实现并优化表面吸附蛋白质的直接电化学提供了一种新技术.  相似文献   

9.
The rebinding kinetics of an amino acid ligand to ferrous microperoxidase-11 (MP11) after photolysis of aggregated ferrous MP11 was measured in aqueous solution with femtosecond transient visible absorption spectroscopy. The kinetics of CO rebinding to ferrous MP11 after photolysis of MP11CO was also measured in aqueous solution with femtosecond transient visible absorption spectroscopy. From these measurements, we found that either Val-11 or Lys-13 rebinds to ferrous MP11 exponentially with an 8 picosecond time constant in aggregated ferrous MP11 solution and that CO rebinds to ferrous MP11 nonexponentially with subnanosecond time scale in MP11CO solution. The kinetics of both the amino acid and CO rebinding to ferrous MP11 in MP11 system mimics that in carbon monoxide oxidation activator protein (CooA) or carboxymethyl cytochrome c (CmCytC) system. We also measured the kinetics of CO rebinding to ferrous MP11 in aqueous solution at different MP11CO concentrations and found that MP11CO concentration has an obvious effect on the kinetics of CO rebinding to ferrous MP11, where both the germinate yield and rate of CO rebinding to ferrous MP11 increase with the increase of MP11CO concentration. These findings suggested that the picosecond amino acid ligand rebinding process could disturb the proximal heme-ligand structure that possibly leads to the subnanosecond CO rebinding kinetics in MP11CO, CooACO and CmCytCCO systems.  相似文献   

10.
FTIR spectral changes of bovine cytochrome c oxidase (CcO) upon ligand dissociation from heme a(3)() and redox change of the Cu(A)-heme a moiety (Cu(A)Fe(a)()) were investigated. In a photosteady state under CW laser illumination at 590 nm to carbonmonoxy CcO (CcO-CO), the C-O stretching bands due to Fe(a3)()(2+)CO and Cu(B)(1+)CO were identified at 1963 and 2063 cm(-)(1), respectively, for the fully reduced (FR) state [(Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)] and at 1965 and 2061 cm(-)(1) for the mixed valence (MV) state [(Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)] in H(2)O as well as in D(2)O. For the MV state, however, another band due to Cu(B)(1+)CO was found at 2040 cm(-)(1), which was distinct from the alpha/beta conformers in the spectral behaviors, and therefore was assigned to the (Cu(A)Fe(a)())(4+)Fe(a3)()(3+)Cu(B)(1+)CO generated by back electron transfer. The FR-minus-oxidized difference spectrum in the carboxyl stretching region provided two negative bands at 1749 and 1737 cm(-)(1) in H(2)O, which were apparently merged into a single band with a band center at 1741 cm(-)(1) in D(2)O. Comparison of these spectra with those of bacterial enzymes suggests that the 1749 and 1737 cm(-)(1) bands are due to COOH groups of Glu242 and Asp51, respectively. A similar difference spectrum of the carboxyl stretching region was also obtained between (Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)CO and (Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)CO. The results indicate that an oxidation state of the (Cu(A)Fe(a)()) moiety determines the carboxyl stretching spectra. On the other hand, CO-dissociated minus CO-bound difference spectra in the FR state gave rise to a positive and a negative peaks at 1749 and 1741 cm(-)(1), respectively, in H(2)O, but mainly a negative peak at 1735 cm(-)(1) in D(2)O. It was confirmed that the absence of a positive peak is not caused by slow deuteration of protein. The corresponding difference spectrum in the MV state showed a significantly weaker positive peak at 1749 cm(-)(1) and an intense negative peak at 1741 cm(-)(1) (1737 cm(-)(1) in D(2)O). The spectral difference between the FR and MV states is explained satisfactorily by the spectral change induced by the electron back flow upon CO dissociation as described above. Thus, the changes of carboxyl stretching bands induced both by oxidation of (Cu(A)Fe(a)()) and dissociation of CO appear at similar frequencies ( approximately 1749 cm(-)(1)) but are ascribed to different carboxyl side chains.  相似文献   

11.
The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14718-14723]. While it is well-established that NO binds to the reduced heme a3 to form a low-spin heme {FeNO}7 species, the role CuB plays in the binding of the second NO remains unclear. Here we present low-temperature FTIR photolysis experiments carried out on the NO complex formed by addition of NO to fully reduced cytochrome ba3. Low-temperature UV-vis, EPR, and RR spectroscopies confirm the binding of NO to the heme a3 and the efficiency of the photolysis at 30 K. The nu(NO) modes from the light-induced FTIR difference spectra are isolated from other perturbed vibrations using 15NO and 15N18O. The nu(N-O)a3 is observed at 1622 cm-1, and upon photolysis, it is replaced by a new nu(N-O) at 1589 cm-1 assigned to a CuB-nitrosyl complex. This N-O stretching frequency is more than 100 cm-1 lower than those reported for Cu-NO models with three N-ligands and for CuB+-NO in bovine aa3. Because the UV-vis and RR data do not support a bridging configuration between CuB and heme a3 for the photolyzed NO, we assign the exceptionally low nu(NO) to an O-bound (eta1-O) or a side-on (eta2-NO) CuB-nitrosyl complex. From this study, we propose that, after binding of a first NO molecule to the heme a3 of fully reduced Tt ba3, the formation of an N-bound {CuNO}11 is prevented, and the addition of a second NO produces an O-bond CuB-hyponitrite species bridging CuB and Fea3. In contrast, bovine cytochrome c oxidase is believed to form an N-bound CuB-NO species; the [{FeNO}7{CuNO}11] complex is suggested here to be an inhibitory complex.  相似文献   

12.
The electronic structures of heme a of cytochrome c oxidase in the redox states were studied, using hybrid density functional theory with a polarizable continuum model and a point charge model. We found that the most stable electronic configurations of the d electrons of the Fe ion are determined by the orbital interactions of the d orbitals of the Fe ion with the π orbitals of the porphyrin ring and the His residues. The redox reaction of the Fe ion influences the charge density on the formyl group through the π conjugation of the porphyrin ring. In addition, we found the charge transfer from the Fe ion to the propionate group of heme a in the redox change despite the lack of the π‐conjugation. We elucidated that the charge propagation originates from the heme a structure itself and that the origin of the charge delocalization to the heme propionate is the orbital interactions between the d orbital of the Fe ion and the p orbitals of the carboxylate part of the heme propionate via the π conjugation of the porphyrin ring and the σ* orbital of the C? C bond of the propionate group. The electrostatic effect by surrounding proteins enhances the charge transfer from the Fe ion to the propionate group. These results indicate that heme propionate groups serve electron mediators in electron transfer as well as electrostatic anchors, and that proteins surrounding the active site reinforce the congenital abilities of the cofactors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

13.
In the ligand channel of the cytochrome c oxidase from Rhodobacter sphaeroides (Rs aa3) W172 and F282 have been proposed to generate a constriction that may slow ligand access to and from the active site. To explore this issue, the tryptophan and phenylalanine residues in Rs aa3 were mutated to the less bulky tyrosine and threonine residues, respectively, which occupy these sites in Thermus thermophilus (Tt) ba3 cytochrome oxidase. The CO photolysis and recombination dynamics of the reduced wild‐type Rs aa3 and the W172Y/F282T mutant were investigated using time‐resolved optical absorption spectroscopy. The spectral changes associated with the multiple processes are attributed to different conformers. The major CO recombination process (44 μs) in the W172Y/F282T mutant is ~500 times faster than the predominant CO recombination process in the wild‐type enzyme (~23 ms). Classical dynamic simulations of the wild‐type enzyme and double mutant showed significant structural changes at the active site in the mutant, including movement of the heme a3 ring‐D propionate toward CuB and reduced binuclear center cavity volume. These structural changes effectively close the ligand exit pathway from the binuclear center, providing a basis for the faster CO recombination in the double mutant.  相似文献   

14.
The tetraheme cytochrome c(554) (cyt c(554)) from Nitrosomonas europaea is an essential electron transfer component in the biological oxidation of ammonia. The protein contains one 5-coordinate heme and three bis-His coordinated hemes in a 3D arrangement common to a newly characterized class of multiheme proteins. The ligand binding, electrochemical properties, and heme-heme interactions are investigated with M?ssbauer and X- and Q-band (parallel/perpendicular mode) EPR spectroscopy. The results indicate that the 5-coordinate heme will not bind the common heme ligands, CN(-), F(-), CO, and NO in a wide pH range. Thus, cyt c(554) functions only in electron transfer. Analysis of a series of electrochemically poised and chemically reduced samples allows assignment of reduction potentials for heme 1 through 4 of +47, +47, -147, and -276 mV, respectively. The spectroscopic results indicate that the hemes are weakly exchange-coupled (J approximately -0.5 cm(-)(1)) in two separate pairs and in accordance with the structure: hemes 2/4 (high-spin/low-spin), hemes 1/3 (low-spin/low-spin). There is no evidence of exchange coupling between the pairs. A comparison of the reduction potentials between homologous hemes of cyt c(554) and other members of this new class of multiheme proteins is discussed. Heme 1 has a unique axial N(delta)-His coordination which contributes to a higher potential relative to the homologous hemes of hydroxylamine oxidoreductase (HAO) and the split-Soret cytochrome. Heme 2 is 300 mV more positive than heme 4 of HAO, which is attributed to hydroxide coordination to heme 4 of HAO.  相似文献   

15.
Laser flash photolysis was used to determine the kinetics of electron transfer between membrane-bound triplet chlorophyll (3C), cytochrome c (cyt c) located in the external water phase, and vesicle-reconstituted cytochrome c oxidase (CCO). 2,5-Di-t-butyl benzoquinone (2,5 TBQ) was used as an electron transfer mediator between 3C and cyt c. A light-induced cyclic electron transfer sequence between the redox components was observed (3C----2.5 TBQ----cyt c----CCO----C+.). Under optimum conditions of membrane surface charge and ionic strength, the overall efficiency of CCO reduction (based on 3C generated by the laser flash) was 14%. Under the anaerobic conditions used, CCO reoxidation (occurring via electron transfer to C+.) was quite slow (halftime approx. 1 s at 75 mM ionic strength). The multicomponent system displayed a high level of stability, as indicated by its ability to undergo many cycles of reduction and reoxidation without any apparent degradation of the components. These results demonstrate the feasibility of constructing complex electron transfer chains, including both soluble and membrane-bound redox proteins, in artificial lipid bilayers, whose properties can be readily controlled by manipulating parameters such as ionic strength and membrane composition.  相似文献   

16.
Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.  相似文献   

17.
Mixed valence (MV) coordination compounds play important roles in redox reactions in chemistry and biology. Details of the contribution of a mixed valence state to protein electron transfer (ET) reactivity such as reorganization energy, however, have not been experimentally defined. Herein we report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of CuA azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also shown that lowering the pH from 8.0 to 4.0 results in a similar (approximately 0.4 eV) decrease in reorganization energy for both blue (type 1) and purple (CuA) azurins, even though the reorganization energies of the two different copper centers are different at a given pH. These results suggest that the MV state plays only a secondary role in modulation of the ET reactivity via the reorganization energy, as compared to that of the driving force.  相似文献   

18.
Internal electron transfer in bovine cytochrome c oxidase was initiated by CO photolysis of the CO-bound mixed-valence form of the enzyme. Transient absorption spectroscopy was used to monitor changes in the redox states of the metal centers in the enzyme brought about by electron re-equilibration. Upon CO photodissociation, reduced high spin cytochrome a3 was generated in less than 0.1 μsec, and a portion of the reduced cytochrome a3 was reoxidized with biphasic rate constants of k1 = 1.0 × 106 s?1 and k2 = 7.8 × 104 s?1. Concomitant reduction of cytochrome a was also observed with biphasic rate constants of k1 = 1.6 × 106 s?1 and k2 = 9 × 104 s?1. The stoichiometry of cytochrome a3 oxidized to cytochrome a reduced was found to be close to 1:1. Contrary to similar studies in the literature, no reduction of CuA was observed. As a control, no transient absorption changes corresponding to electron transfer was observed in the CO-inhibited fully reduced form of the enzyme. These results indicate that there is significant electron reequilibration only between cytochrome a3 and cytochrome a upon photolysis of the CO-bound mixed-valence enzyme.  相似文献   

19.
The photoreduction of oxidized bovine heart cytochrome c oxidase (CcO) by visible and UV radiation was investigated in the absence and presence of external reagents. In the former case, the quantum yields for direct photoreduction of heme A (heme a + heme a(3)) were 2.6 +/- 0.5 x 10(-3), 4 +/- 1 x 10(-4), and 4 +/- 2 x 10(-6) with pulsed laser irradiation at 266, 355 and 532 nm, respectively. Within experimental uncertainty, the quantum yields did not depend on pulse energy, implying that the mechanism is monophotonic. Irradiation with 355 nm light resulted in spectral changes similar to those produced independently by reduction with dithionite, whereby the low-spin heme a and Cu(A) are reduced first. Extended illumination at 355 and 532 nm yielded substantial amounts of reduced heme a(3). Heme decomposition was noted with 266 nm light. In the presence of formate and cyanide ions, which bind at the binuclear heme a(3)/copper center in CcO, irradiation at 355 nm caused selective reduction of only the low-spin heme a and Cu(A). The addition of ferrioxalate ion dramatically increased the efficiency of cytochrome c oxidase photoreduction. The quantum efficiency for heme A reduction was found to be near unity, significantly greater than for other known methods of photoreduction. The active reductant is most likely ferrous iron, and its reduction of the enzyme is thermodynamically driven by the reformation of ferrioxalate in the presence of excess oxalate ion. Other metalloenzymes with redox potentials similar to those of cytochrome c oxidase should be amenable to indirect photoreduction by this method.  相似文献   

20.
Cytochrome c functions as an electron carrier in the mitochondrial electron-transport chain using the Fe(II)-Fe(III) redox couple of a covalently attached heme prosthetic group, and it has served as a paradigm for both biological redox activity and protein folding. On the basis of a wide variety of biophysical techniques, it has been suggested that the protein is more flexible in the oxidized state than in the reduced state, which has led to speculation that it is the dynamics of the protein that has been evolved to control the cofactor's redox properties. To test this hypothesis, we incorporated carbon-deuterium bonds throughout cytochrome c and characterized their absorption frequencies and line widths using IR spectroscopy. The absorption frequencies of several residues on the proximal side of the heme show redox-dependent changes, but none show changes in line width, implying that the flexibility of the oxidized and reduced proteins is not different. However, the spectra demonstrate that folded protein is in equilibrium with a surprisingly large amount of locally unfolded protein, which increases with oxidation for residues localized to the proximal side of the heme. The data suggest that while the oxidized protein is not more flexible than the reduced protein, it is more locally unfolded. Local unfolding of cytochrome c might be one mechanism whereby the protein evolved to control electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号