首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel approach called SHAFTS (SHApe-FeaTure Similarity) for 3D molecular similarity calculation and ligand-based virtual screening. SHAFTS adopts a hybrid similarity metric combined with molecular shape and colored (labeled) chemistry groups annotated by pharmacophore features for 3D similarity calculation and ranking, which is designed to integrate the strength of pharmacophore matching and volumetric overlay approaches. A feature triplet hashing method is used for fast molecular alignment poses enumeration, and the optimal superposition between the target and the query molecules can be prioritized by calculating corresponding "hybrid similarities". SHAFTS is suitable for large-scale virtual screening with single or multiple bioactive compounds as the query "templates" regardless of whether corresponding experimentally determined conformations are available. Two public test sets (DUD and Jain's sets) including active and decoy molecules from a panel of useful drug targets were adopted to evaluate the virtual screening performance. SHAFTS outperformed several other widely used virtual screening methods in terms of enrichment of known active compounds as well as novel chemotypes, thereby indicating its robustness in hit compounds identification and potential of scaffold hopping in virtual screening.  相似文献   

2.
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.  相似文献   

3.

Background  

The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed.  相似文献   

4.
The methods of computer-aided drug design can be divided into two categories according to whether or not the structures of receptors are known1, corresponding to two principal strategies: (1) searching the bio-active ligands against virtual combinatorial libraries and calculating the affinity energy between ligand and receptor by docking ; (2) QSAR and 3D-structure data-mining. 3D-QSAR method is now applied widely to drug discovery, but this method is generally limited to refine the structu…  相似文献   

5.
6.
随着计算技术的发展和分子模拟软件的日趋成熟, 虚拟筛选已经在药物发现过程中发挥着越来越重要的作用. 在虚拟筛选过程中, 所使用化合物库的质量对先导化合物发现的成功率起着至关重要的作用. 本文通过对已知药物库、天然产物库、中药原植物化学成分库、筛选常用商业化合物库以及研究者所在实验室建立的化合物库的分析比较, 从化合物库的分子多样性、化学空间和分子骨架等多个方面提取并对比每一种化合物库的特征, 发现了已知药物库与中药原植物化学成分库的特征相似性, 揭示了中药原植物化学成分库作为筛选库的类药性优势, 并且深化了对几种筛选用化合物库特征的认识和理解.  相似文献   

7.
Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.  相似文献   

8.
Computationally efficient structure-based virtual screening methods have recently been reported that seek to find effective means to utilize experimental structure information without employing detailed molecular docking calculations. These tools can be coupled with efficient experimental screening technologies to improve the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query. We report here the development of a new structure-based pharmacophore search method (called Shape4) for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the pseudoligand. We report the detailed computational protocol and its computational validation using known biologically active compounds extracted from the WOMBAT database. Models derived for five selected targets were used to perform the virtual screening experiments to obtain the enrichment data for various virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than other related methods, often with better diversity among the top ranking computational hits.  相似文献   

9.
10.
介绍了Schr?dinger药物虚拟筛选的基本原理和流程,结合大学生物和化学信息学课程的相关教学内容,分别描述了蛋白受体的预处理、类药性五原则、毒药物动力学(ADME)、泛筛选干扰化合物(PAINS)、高通量虚拟筛选、标准精度筛选、高精度筛选和MM/GBSA的打分排序原理和使用方法。该软件可以在大学生物和化学信息学的教学中演示,有助于提高学生对蛋白结构、分子构象、药物虚拟筛选和计算机辅助分子设计的理解,该软件有很好的图形界面,可以给学生直观的体验,大大丰富了大学课堂的教学内容。此外,该软件在药物设计领域里面也有很好的应用价值,大大节约了药物筛选的成本,提高了药物发现的效率。  相似文献   

11.
郁倩倩  蒋颖敏  许磊  朱景宇  陈蕴  金坚 《化学通报》2021,84(10):1102-1107
大量研究表明JAK3与炎症疾病的发生、发展具有密切的关系,使得JAK3成为一个极具潜力的药物靶点。其中,JAK3共价抑制剂因其选择性高、活性强的特点受到广泛关注。但是,JAK3与其家族的其他成员同源性高,使得开发JAK3选择性抑制剂充满挑战。计算机虚拟筛选方法可以在分子水平对JAK3的结构特征进行针对性筛选,但是传统的共价对接方法效率较低、准确度欠佳,因此本文提出了一种结合药效团和共价对接的虚拟筛选策略。该联用方法从DrugBank数据库成功地筛选出已报道的JAK3临床抑制剂,表明了这种虚拟筛选不仅具有较高的效率,同时具备了较强的筛选准确性,为JAK3共价抑制剂的虚拟筛选提供一定的指导作用。  相似文献   

12.
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.  相似文献   

13.
Ligand promiscuity, which is now recognized as an extremely common phenomenon, is a major underlying cause of drug toxicity. We have developed a new reverse virtual screening (VS) method called ReverseScreen3D, which can be used to predict the potential protein targets of a query compound of interest. The method uses a 2D fingerprint-based method to select a ligand template from each unique binding site of each protein within a target database. The target database contains only the structurally determined bioactive conformations of known ligands. The 2D comparison is followed by a 3D structural comparison to the selected query ligand using a geometric matching method, in order to prioritize each target binding site in the database. We have evaluated the performance of the ReverseScreen2D and 3D methods using a diverse set of small molecule protein inhibitors known to have multiple targets, and have shown that they are able to provide a highly significant enrichment of true targets in the database. Furthermore, we have shown that the 3D structural comparison improves early enrichment when compared with the 2D method alone, and that the 3D method performs well even in the absence of 2D similarity to the template ligands. By carrying out further experimental screening on the prioritized list of targets, it may be possible to determine the potential targets of a new compound or determine the off-targets of an existing drug. The ReverseScreen3D method has been incorporated into a Web server, which is freely available at http://www.modelling.leeds.ac.uk/ReverseScreen3D .  相似文献   

14.
We previously reported that solvent dipole ordering (SDO) at the ligand binding site of a protein indicates an outline of the preferred shape and binding pose of the ligands. We suggested that SDO‐mimetic pseudo‐molecules that mimic the 3D shape of the SDO region could be used as molecular queries with a shape similarity matching method in virtual screening. In this work, a virtual screening method based on SDO, named SDOVS, was proposed. This method was applied to virtual screening of ligands for four typical drug target proteins and the performance compared with that of FRED (well‐known rigid docking method); the efficiency of SDOVS was demonstrated to be better than FRED. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.  相似文献   

16.
17.
In the past decade, the scientific community has realized the value of three-dimensional (3D) structural information and '3D searching' has started to become an important new methodology for computer-aided drug design. During this time, molecular modeling information generated from various sources has proliferated due to the growing availability of software and hardware and the increasing use of crystallographic and spectroscopic techniques. This information needs to be organized to allow for its effective storage and retrieval. This paper presents an approach to address this problem with a recently introduced program, MACCS-3D. In particular, this approach utilizes MACCS-3D's capability of handling data specific for atoms and atom pairs. With this software, various biological, computational, and spectroscopic data can be merged, allowing scientists from different disciplines to access and use this information more efficiently.  相似文献   

18.
19.

Background  

Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability.  相似文献   

20.
Searching chemical databases for possible drug leads is often one of the main activities conducted during the early stages of a drug development project. This article shows that spherical harmonic molecular shape representations provide a powerful way to search and cluster small-molecule databases rapidly and accurately. Our clustering results show that chemically meaningful clusters may be obtained using only low order spherical harmonic expansions. Our database search results show that using low order spherical harmonic shape-based correlation techniques could provide a practical and efficient way to search very large 3D molecular databases, hence leading to a useful new approach for high throughput 3D virtual screening. The approach described is currently being extended to allow the rapid search and comparison of arbitrary combinations of molecular surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号