首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Specific features of the textures (the preferred orientation of the nanometer building blocks) in the structures of mixed-anion compounds—rare-earth borogermanates, germanophosphates, and borotungstates that arise from the acid-base interaction in the Ln2O3-B2O3-GeO2, Ln2O3-GeO2-P2O5, and Ln2O3-B2O3-WO3 systems (Ln = La-Gd)—have been studied. Based on characteristic texture traits, the mixed-anion compounds of early rare-earth elements can be divided into three groups: (i) Ln2O3: ExOy > 1, (ii) Ln2O3: ExOy = 1, and (iii) Ln2O3: ExOy < 1. Because of the dominant structural effect of the basic oxide Ln2O3 in the compounds of the first group, the structures of Nd14O8(BO3)6(GeO4)2 and Pr11O10(GeO4)(PO4)3 are composed of infinite [LnOn] bands and layers and discrete groups [EOm] located in the interband and interlayer spaces. The dominant structural effect of the acid oxides [ExOy] in the compounds of the third group leads to the appearance of ring textures composed of [LnOn], as well as to the appearance of chains and networks composed of [EOm], in the structures of Ln(BGeO5) and Ln(BO2)(WO4). Original Russian Text ¢ G.A. Bandurkin, N.N. Chudinova, G.V. Lysanova, K.K. Palkina, E.V. Murashcva, V.A. Krut’ko, G.M. Balagina, 2006, published in Zhurnal Neorganicheskoi Khimii, 2006, Vol. 51, No. 2, pp. 334–347.  相似文献   

2.
The cloud points (CPs) of the copolymers 17R4 and L64 were first measured, and then the effects of salts ((NH4)3C6H5O7, K3C6H5O7) on 17R4 and L64 were researched. After finishing the work described above, the temperature (278.15, 283.15, and 288.15) K of aqueous two-phase systems was determined, which consist of 17R4-(NH4)3C6H5O7, 17R4-K3C6H5O7, L64-(NH4)3C6H5O7, and L64-K3C6H5O7. Finally, the liquid–liquid equilibrium (LLE) data of binodal curve and the tie line for 17R4-(NH4)3C6H5O7 aqueous two- phase systems (ATPSs) 17R4-K3C6H5O7 ATPSs, L64-(NH4)3C6H5O7 ATPSs, and L64-K3C6H5O7 ATPSs were obtained. Nonlinear fitting of the empirical equation was used for making the diagram. The results showed that the change in the size of the two-phase areas increases with the increase of temperature. The capacity of the salts to induce phase segregation follows the Hofmeister series, that is, K3C6H5O7?>?(NH4)3C6H5O7. In addition, the findings also showed that the phase separation ability of 17R4 is better than that of L64.  相似文献   

3.
The interaction between a long chain alkane, tetradecane (abbreviated H14), molecule and a semi-fluorinated alkane, 1-perfluorododecyl-hexadecane F(CF2)12(CH2)16H (abbreviated F12H16), molecule at the air/ H14 solution interface was studied by measuring the surface tension of the H14 solutions of F12H16 as a function of temperature and bulk concentration under atmospheric pressure. Pure liquid H14 freezes without forming a condensed film at its surface. Nevertheless, a very small amount of F12H16 initiates the surface freezing of H14. In contrast to the F12H16-hexadecane (abbreviated H16) system, the condensed monolayer of H14 has a finite solubility of F12H16 in the F12H16-H14 system. By further increasing the bulk concentration of F12H16, the F12 chains of the F12H16 molecules form the other closely packed condensed state. Hence, as in the case of the H16 system, the H14 system also exhibits a surface hetero-azeotrope behavior in the lower temperature region. Below the surface hetero-azeotropic point, the condensed H14 monolayer containing a small amount of F12H16 is completely replaced by the condensed monolayer of F12H16. At 2 °C, for example, a surface of H14 solution of F12H16 covered with a gaseous film of F12H16 is replaced by a condensed H14 monolayer containing an almost gaseous state of F12H16, and is then completely replaced by the condensed monolayer of F12H16 with increasing bulk concentration. Above the temperature of the triple point for the F12H16 monolayer, the F12H16-H14 system exhibits a gaseous, expanded, and condensed state.  相似文献   

4.
The following p-substituted N,N-bis-trimethlsilyl anilines p-X? C6H4? N[Si(CH3)3]2 are prepared by silylation of free amines: X = H, CH3, C2H5, CH3O, CH3CO, F, Cl, Br, J, CN, C6HS, (CH3)3SiO, and [(CH3)3Si]2N, and the isotopic derivatives C6H5? 15N[Si(CH3)3]2 and C6D5N[Si(CH3)3]2. The vibrational spectra are reported and assigned. The molecular symmetry of p-[(CH3)3Si]2N? C6H4? N[Si(CH3)3]2 is determined. The influence of the mass of the substituents X on the positions of the νsSiNSi vibrational frequencies is discussed.  相似文献   

5.
Concerning the Synthesis of the Heptaphospha-nortricyclanes R3P7 R = Et, i-Pr, n-Bu, i-Bu, SiH2Me, SiH3, Et2P—SiMe2 The preparative access to the compounds Et3P7 1 ,i-Pr3P7 2 ,n-Bu3P7 3 ,i-Bu3P7 4 , (H3Si)3P7 5 , (MeH2Si)3P7 6 , and (Et2P—SiMe2)3P6 7 through the reaction of Li3P7 · 3 DME with either EtBr, i-PrBr, n-BuBr, H3SiI, MeSiH2Br or Et2P—Sime2Cl, respectively, is described. At 20°C the compounds 1 to 4 are yellow-greenish, viscid liquids (viscosity increases with the size of R), which are well soluble in ethers and non-polar solvents. 5 forms colorless crystals, which (similar to those of 6 ) decompose, when exposed to sunlight. 6 and 7 are generated quantitatively, these compounds, however, cannot be isolated undecomposed. While the formation of 1 occurs quantitatively via the red intermediate Li2EtP7, it is possible to isolate Li(i-Pr)2P7 from the residue of the reaction leading to i-Pr3P7. This Li-phosphide is said to cause the formation of higher, P-rich phosphanes like i-Pr3P9. Treatment of Li3P7 with (Me3C)3SiBr does not yield [(Me3C)3Si]3P7. The ratio R3P7(sym.): R3P7(asym.) — being 1:3 in Et3P7 or Me3P7-shifts with increasing size of R, favouring the symmetrical isomer. There are no hints for the formation of an asymmetrical isomer in (H3Si)3P7 — as already known from (Me3Si)3P7, where an asymmetric isomer does not exist either.  相似文献   

6.
Several vertical sections are investigated in the HgBr2-PbBr2-CsBr system by the methods of physicochemical analysis. Six compounds, namely, CsHg2Br5, CsHgBr3, Cs2HgBr4, CsPb2Br5, CsPbBr3, and Cs4PbBr6, are formed in the bordering binaries of the ternary system. By the results of investigation, the projection of the liquidus surface of the HgBr2-PbBr2-CsBr system on the composition triangle is constructed, and the fields of primary crystallization of nine phases are plotted, namely, HgBr2, PbBr2, CsBr, CsHg2Br5, CsHgBr3, Cs2HgBr4, CsPb2Br5, CsPbBr3, and Cs4PbBr6. An immiscibility region is found in the system. This region occupies a considerable part of the primary crystallization field of PbBr2. The coordinates of invariant points are determined, and isotherms are plotted.  相似文献   

7.
In the Sc2O3---Ga2O3---CuO, Sc2O3---Ga2O3---ZnO, and Sc2O3---Al2O3---CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3---A2O3---BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFe3+MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAlCuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations.  相似文献   

8.
A 480 L evacuable reaction chamber, equipped with FT-IR spectroscopy on-line and ion chromatography off-line, has been used to study the gas phase reaction between the nitrate radical, NO3, and the reduced organic sulphur compounds CH3CH2SH, (CH3CH2)2S, (CH3CH2)2S2, and CH3CH2SCH3 in air. The products CH3CH2SO3H, SO2, H2SO4, CH3CHO, and CH3CH2ONO2 were identified and quantified in the reactions of the first three compounds, CH3CH2SH, (CH3CH2)2S, and (CH3CH2)2S2. The reaction products were CH3CH2SO3H, CH3SO3H, SO2, H2SO4, CH3CHO, and CH2O in the reaction of CH3CH2SCH3. On the basis of identified reaction products and intermediates observed in the infrared spectra, mechanisms are proposed for the reactions between the NO3 radical and the four reduced organic sulphur compounds. The results of this study, together with those from previous experiments performed in this laboratory on CH3SCH3, CH3SH, and CH3SSCH3 lead to the conclusion that all these species, in the reaction with the NO3 radical, follow a similar degradation mechanism producing SO2, H2SO4, R? SO3H, R? CHO, and R? CH2ONO2, as the main reaction products. The inital step of the reaction of NO3 with R? S? R and R? S? H type (R = CH3, CH2CH3) reduced organic sulphur compounds was found to be H-atom abstraction, probably after the formation of an initial adduct. For the reaction between NO3 and R? S? S? R type compounds, evidence for an addition-decomposition reaction, as the initial steps, was obtained. R? S·, R? S(O)·, and R? S(O)2· appear to be formed as intermediates in all the reactions. © John Wiley & Sons, Inc.  相似文献   

9.
The Courses of the Ammonolyses of the Ammonium Hexafluorometalates of Aluminum, Gallium, and Indium, (NH4)3MF6 (M = Al, Ga, In) The courses of the ammonolysis reactions of the ammonium hexafluorometalates (NH4)3MF6 (M = Al, Ga, In) were investigated with the aid of in‐situ powder diffractometry and differential thermal analysis. Under these conditions, the reaction of (NH4)3AlF6 with gaseous ammonia yields at about 360 °C AlF3 via the intermediates NH4AlF4, Al(NH3)2F3 and Al(NH3)F3. The ammonolysis of (NH4)3GaF6 produces GaN at about 400 °C. Depending upon the actual reaction conditions, the intermediates NH4GaF4 and Ga(NH3)F3 as well as their ammonia adducts NH4GaF4 · NH3 and Ga(NH3)2F3 and the amide‐ammoniate Ga(NH3)(NH2)F2 are observed. In the case of (NH4)3InF6 the intermediates (NH4)3InF6 · NH3 and In(NH3)F3 may exist; there are also indications for the reduction of In(III) to In(I) and for the existence of In(NH3)2F and InF as products of the ammonolysis of (NH4)3InF6.  相似文献   

10.
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts.  相似文献   

11.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

12.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

13.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

14.
《Solid State Sciences》1999,1(7-8):637-646
The Nb6 oxychlorides based on Nb6L18 units that we have isolated, as well as another one recently reported in the literature, are reviewed. Each of them is structurally described through a relevant example: Cs2LuNb6Cl17O, Cs2UNb6Cl15O3, ScNb6Cl13O3, Ti2Nb6Cl14O4 and KLu3Nb6Cl15O6, the structure of the latter has just been solved. They are discussed by comparison with the Nb6 chlorides and Nb6 oxides, considering the electronic and steric evolution of the Nb6L18 unit upon increasing O/C1 ratio. The environments of the trivalent cations will be compared, specially those involving extra halogens in KLu3Nb6Cl15O6 and Ti2Nb6Cl14O4.  相似文献   

15.
The tellurenyl fluoride, 2‐Me2NCH2C6H4TeF, was obtained from reaction of the tellurenyl iodide RTeI with AgF. The compound was unambiguously identified by 19F and 125Te NMR spectroscopy. The decomposition under disproportionation leads to the tellurium(IV) trifluoride, 2‐Me2NCH2C6H4TeF3 and the ditelluride RTeTeR. The fluorination of the ditelluride, (2‐Me2NCH2C6H4Te)2, with XeF2 results in pure RTeF3. The molecular structure of 2‐Me2NCH2C6H4TeF3, the second structural characterized tellurium(IV) trifluoride, has been determined. Furthermore the syntheses of the new tellurium(IV) difluoride, (2‐Me2NCH2C6H4)2TeF2, and corresponding tellurium(IV) diazide, (2‐Me2NCH2C6H4)2Te(N3)2 as well as the tellurium(IV) triazide, 2‐Me2NCH2C6H4Te(N3)3, and their characterization by spectroscopic methods were reported. During these investigations a rather interesting tellurium(VI) species was formed and the molecular structure of a subsequent product, [(2‐Me2NHCH2C6H4)2TeF3O]2(SiF6), was elucidated. Theoretical investigations for the compounds containing the stabilizing 2‐dimethylaminomethylphenyl substituent are illustrated.  相似文献   

16.
Complexes of Rhenium with Planar ReN2S2 Rings. Syntheses and Crystal Structures of AsPh4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] The complex [ReCl4(N2S2)]? can be obtained as PPh4 or AsPh4 salt by the action of S(NSiMe3)2 and of diphenylacetylene, respectively, on the chlorothionitrene complex [ReCl4(NSCl)2]?. Another method of synthesis is the reaction of [ReCl3(NSCl)2(POCl3)] with SbPh3. [ReBr3(N2S2)]2 is obtained from excess Me3SiBr and [ReCl3(NSCl)2(POCl3)]. The anionic complex [ReBr4(N2S2)]? forms from either [ReCl4(NSCl)2]? or [ReCl4(N2S2)]? with Me3SiBr. All compounds are black, diamagnetic, and sensitive to moisture; the PPh4 and AsPh4 salts are soluble in CH2Cl2 and CH2Br2. The IR spectra are reported. The crystal structures of AsPh,4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] were determined by X-ray diffraction. AsPh4[ReCl4(N2S2)]: space group P2/n, Z = 2, a = 1244.5, b = 1429.3, c = 791.1 pm, γ = 96.89° (1715 observed reflexions, R = 0.082). PPh4[ReBr4[ReBr4(N2S2)]: space group P21/n, Z = 4, a = 961.7, b = 1397.4, c = 2205.7 pm, β = 102.10° (1787 observed reflexions, R = 0.073). In both compounds the [ReX4(N2S2)]? anions have the same type of structure, the Re atoms forming part of planar ReN2S2 rings; the bond lengths are ReN 177 pm, NS 152 pm, and SS 259 for the chloro compound and ReN 184 pm, NS 153 pm, and SS 264 pm for the bromo compound. In AsPh4[ReCl4(N2S2)] the cations are stacked to form columns in the c-direction; in PPh4[ReBr4(N2S2)], there is considerable distortion form this packing principle.  相似文献   

17.
The most prominent ion in the mass spectra of C6F5CH2X (X ? H, Br, CH:CH2, COCl, and CH2C6F5) is C7F5H2+, formulated as the pentafluorotropylium cation. This ion is also found, in an amount comparable to the parent ion, in the spectrum of (C6F5)2CH2. The heptafluorotropylium cation is found similarly in the spectrum of C6F5CF3. The mass spectra of (C6F5)2CHBr and [(C6H5)2CH]2 exhibit an ion C13F10H+ as the base peak, which is probably a pentafluorophenylpentafluorotropylium cation. The alcohol (C6F5)2CHOH shows loss of C6F5, followed by 2H, as a major breakdown pathway. The mode of formation, and the subsequent fragmentation, of the major ions in these spectra, are discussed.  相似文献   

18.
In an M-T-O model system (M is a polyvalent metal; T = Ge or Si), we consider initial stages of formation of cyclic MT clusters and the mechanism of their modification by T tetrahedra. The polyhedron ratio T/M in clusters increases progressively during modeling from one in M2T2 to two (M2T2 + 2T = M2T4), three (M2T2 + 2T2 = M2T6), and four (M2T2 + 2T + 2T2 = M2T8). These types of clusters were used to find precursor clusters for T-condensed structures of Na2Pr6Ge8O26, Na4Sc2Ge4O13, and Na5ScGe4O12. The TOPOS program package was used to carry out the complete 3D reconstruction of the self-assembly of Na,TR germanates: precursor cluster → primary chain → microlayer → microframework (supraprecursor) → ... framework. In all structures, as previously in six orthotetrahedral Na,TR germanate structures, the basic invariant type of four-polyhedral cyclic precursor cluster M2T2 was identified; this cluster is built of TR polyhedra, with CN = 6 or 7, linked via orthotetrahedra. The features of the generation of a Ge radical were considered in the form of a Ge2O7 chain and a Ge4O12 ring in various layers of the Na2Pr6Ge8O26 composite structure, a Ge4O13 chain in Na4Sc2Ge4O13, and a Ge12O36 ring in the Na5ScGe4O12 superionic conductor. Original Russian Text ? G.D. Ilyushin, L.N. Dem’yanets, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 484–496.  相似文献   

19.
The esterification reaction of n-butanol with acetic acid ([BuOH] : [HOAc] = 1 : 15 mol/mol; 55°C, 5% H2O) was studied in the presence of tungsten heteropoly acids of the Keggin (H3PW12O40, H4SiW12O40, H5PW11TiO40, H5PW11ZrO40, and H3PW11ThO39) and Dawson structure (-H6P2W18O62, H6P2W21O71(H2O)3, H6As2W21O69(H2O), and H21B3W39O132). The reaction orders with respect to H6P2W21O71(H2O)3, H3PW12O40, and H6P2W18O69are equal to 0.78, 1.00, and 0.97, respectively. It was found that the reaction rate depends on the acidity, as well as on the structure and composition of heteropoly acids. The H21B3W39O132heteropoly acid is most active, whereas the Keggin-structure heteropoly acids exhibit the lowest activities. Of the Keggin structure heteropoly acids, H5PW11ZrO40exhibits the highest activity because of the presence of a Lewis acid site in its structure.  相似文献   

20.
Three samples, LiNi0.5Mn1.5O4, LiNi0.4Mn1.4Co0.2O4, and LiNi0.4Mn1.4Cr0.15Co0.05O4, were prepared by sol–gel method and characterized by powder X-ray diffraction, Fourier transformed infrared spectroscope, scanning electron microscopy, Brunauer–Emmett–Teller surface area, four-probe resistance, cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge test. It is found that the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4 exhibits an improved performance compared with the Co-doped sample LiNi0.4Mn1.4Co0.2O4 and the undoped sample LiNi0.5Mn1.5O4, especially at elevated temperature. At 25 °C, the discharge capacity of LiNi0.4Mn1.4Cr0.15Co0.05O4 is 130 mAh g?1 at 0.1 C and 103 mAh g?1 at 10 C. At an elevated temperature (55 °C), its 1 C discharge capacity is 136 mAh g?1 and maintains 95.6 % of its initial capacity after 100 cycles. Compared with the reported results of LiNi0.4Mn1.4Co0.2O4 and LiNi0.475Mn1.475Co0.05O4, the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4, with least content of Co, 0.05, possesses not only the high C-rate capacity but also the structural stability. The mechanism on the electrochemical performance improvement of LiNi0.5Mn1.5O4 by the co-doping was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号