首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total probability of production of an electron-positron pair by a polarized photon in a constant uniform electromagnetic field of an arbitrary configuration is determined using the imaginary part of the diagonalized polarization operator. Approximate expressions are derived for this probability in four ranges of photon energy. In the high-energy range, the corrections to the standard semiclassical approximation are calculated. In the range of intermediate energies, in which this approximation is inapplicable, the probability of the process is calculated using the steepest descent method. It is shown that in the range of photon energies higher than the pair production threshold in a magnetic field, a weak electric field removes root divergences in the probability of production of the particles at the Landau levels. For relatively low photon energies, a low-energy approximation is developed. At such energies, the effect of the electric field on the process is decisive, while the effect of the magnetic field is associated with its interaction with the magnetic moment of the particles being produced. Such an interaction is manifested, in particular, in the difference in the probabilities of production of a pair by an external field for scalar and spinor particles.  相似文献   

2.
Within the framework of quantum electrodynamics in curved space-time, we consider the process of radiation of a photon by an electron in Robertson-Walker space with flat propagation of cross-sections and expansion law α(η)=βη. The computations are conducted at low order in the theory of perturbations for radiation interactions. It is shown that radiation of a photon by an electron is accompanied by the birth of electronpositron pairs and photons from a vacuum. Since the processes cannot be physically separated from each other, in this paper we compute the probability for the entire process, as well as the average number of particles in the final state of the fermion field. Biisk Technological Institute, I. I. Polzunov Altai Technical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 92–97, September, 1996.  相似文献   

3.
A number of laboratories are currently developing monochromatic sources of X-rays and gamma quanta based on the Compton backscattering (CBS) of laser photons by relativistic electrons. Modern technologies are capable of providing a concentration of electrons and photons in the interaction point such that each primary electron can emit several hard photons. In contrast to the well-known nonlinear CBS process, in which an initial electron “absorbs” a few laser photons and emits a single hard one, the above-mentioned process can be called a multiple CBS process and is characterized by a mean number of emitted photons. The present paper is devoted to simulating the parameters of a beam of back scattered quanta based on the Monte Carlo technique. It is shown that, even in the case of strong collimation of a resulting photon beam, the radiation monochromaticity may deteriorate because of the contribution coming from the multiple photon emission, which is something that must be considered while designing new CBS sources.  相似文献   

4.
The effect of the creation of an arbitrary number of massive pairs by a photon in the spatially flat model of the radiation-dominated Universe is considered. The process added-up probability is calculated within the framework of scalar quantum electrodynamics conformally related to the metric of a curved spacetime. The rate of photon decay in the radiation-dominated universe as well as the mean number of the created particles have been found. Comparison of the rate of the pair creation in the photon decays with the rate of the pair creation in the photon-photon collisions which take place in the Minkowski spacetime has been carried out. The estimates having been made show the number density of the particles created in the processes of the photon decays in the radiation-dominated Universe to be by a factor of 1030 higher than the number density of the particles created from the vacuum of the free scalar field by the gravitational background.  相似文献   

5.
The process of splitting a photon into three by an electron is considered in this paper. A calculation is carried out in the lower order of perturbation theory, based on the exact solution of the problem concerning the motion of an electron in the field of a quantized plane electromagnetic wave. The photons of the wave are taken to be linearly polarized in both the initial and final states and the electron is unpolarized. The -component of the differential and total emission probability is calculated. Special cases of the differential and total probability for the polarized photon emitted are presented.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 12–15, February, 1979.In conclusion, the authors thank Professor V. G. Bagrov for attention to work.  相似文献   

6.
We study the interaction of electrons in graphene with the quantized electromagnetic field in the presence of an applied uniform electric field using the Dirac model of graphene. Electronic states are represented by exact solutions of the Dirac equation in the electric background, and amplitudes of first-order Feynman diagrams describing the interaction with the photon field are calculated for massive Dirac particles in both valleys. Photon emission probabilities from a single electron and from a many-electron system at the charge neutrality point are derived, including the angular and frequency dependence, and several limiting cases are analyzed. The pattern of photon emission at the Dirac point in a strong field is determined by an interplay between the nonperturbative creation of electron–hole pairs and spontaneous emission, allowing for the possibility of observing the Schwinger effect in measurements of the radiation emitted by pristine graphene under DC voltage.  相似文献   

7.
The process of formation of a polarized muon-photon shower in crystals has been investigated under the following initial conditions: (i) a shower is generated by a high-energy longitudinally polarized initial muon and (ii) a shower is generated by a circulaly polarized high-energy γ photon. Analytical expressions have been obtained for the distribution functions of polarized shower muons and γ photons in the medium and comparative analysis of the number of shower particles under different initial conditions has been performed.  相似文献   

8.
The probabilities of the emission of a photon by an electron and e + e ?-pair photoproduction in a field which is a superposition of two electromagnetic plane waves with different frequencies and propagating in the same direction are obtained. The case where the frequencies of the two modes are commensurate is studied in detail. This case is interesting primarily because of the existence of effects due to the interference of amplitudes, corresponding to a different number of photons absorbed from different modes but having the same total 4-momentum. It is shown that the optimal field for observing interference effects is a field such that the ratio of the mode frequencies is 3. The probabilities of radiation and pair-photoproduction processes in the field of a monochromatic plane wave and in a two-mode field, obtained by splitting the initial wave into two waves, are compared. It is shown that the total probability of the emission of a photon by an electron in a two-mode field is lower than and the probability of pair photoproduction is higher than the probabilities of the same processes in the initial wave. The increase in the pair-photoproduction probability is explained by the fact that additional channels for reactions which are forbidden in the initial monochromatic field open up in a two-mode field.  相似文献   

9.
10.
We consider a new method for the generation of polarization-frequency entangled states of photon pairs. We use a frequency-nondegenerate regime of spontaneous parametric down conversion where the photon pairs (biphotons) are produced with identical polarizations, propagate mostly in the same direction, but differ in frequency. Entanglement is achieved by a coherent superposition of pairs emitted from two nonlinear crystals, with the polarization of the biphotons from the first crystal being changed by a transformer placed between the two crystals. We show that this scheme allows the degree of entanglement to be controlled by the choice of biphoton frequencies.  相似文献   

11.
A model of two 2-level atoms interacts with a single quantized electromagnetic field is considered. We study the effect of the mean photon number and the structure of the initial states of the two atoms on the dynamics of the atomic system from the separability point of view. It is found that, if we start from a product mixed atomic state, the probability of generating long living entangled states is increased as the mean photon number increases. Starting from excited atomic system in product state, one generates a more stable entangled states with high degree of entanglement. Also, the effect of the mean photon number on atomic system prepared initially in entangled states is investigated. It is found that the entangled state generated from the initially partial entangled states are more robust than those obtained from a maximum entangled state. The Pancharatnam phase for the separable and entangled states is studied under the effect of the mean photon number and the structure of the initial state. We find that for the separable states, the collapses decrease and the amplitude of the revivals is smaller than that for the entangled state, so there are long-living entangled phases. This property give us a great chances to store safely information in entangled state.  相似文献   

12.
Within the framework of scalar quantum electrodynamics (QED) conformally connected with an external gravitational field, the effect of the photoproduction of an arbitrary number of charged massive particle pairs is studied for the quasi-Euclidian model of a radiation-dominated Universe. The total probability of the process is calculated, and the time period during which the given process occurs is determined. The total probability is analyzed and compared with a similar expression obtained in the context of spinor theory. The estimations demonstrate that the total probability of rigid photon decay obtained in the context of scalar theory is by an order of magnitude less than that calculated from the corresponding expression obtained in the context of spinor QED.  相似文献   

13.
高入射能量下的金属二次电子发射模型   总被引:2,自引:0,他引:2       下载免费PDF全文
杨文晋  李永东  刘纯亮 《物理学报》2013,62(8):87901-087901
基于高入射能量电子产生二次电子发射的物理过程, 分别对高入射能量电子产生的真二次电子和背散射电子的概率进行理论分析与建模. 利用Bethe能量损失模型和内二次电子逸出概率分布, 推导出高入射能量电子产生有效真二次电子发射的系数与入射能量的关系式; 根据高入射能量电子在材料内部被吸收的规律, 推导出高入射能量电子产生背散射电子的系数与入射能量之间的关系式. 结合两者得到高入射能量下金属的二次电子发射模型. 利用该模型计算得到典型金属材料Au, Ag, Cu, Al的二次电子发射系数, 理论计算结果与采用Casino软件模拟金属内部散射过程得到的数值模拟结果相符. 关键词: 二次电子发射 高入射能量 金属表面 散射过程  相似文献   

14.
The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity. Here, we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration. With the presence of the Rydberg blockade effect, we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous fourwave mixing process. In contrast to the case without a gate field, more than 50% of the photons sent to the switch are blocked,and finally achieve an effective single-photon switch. There are on average 1-2 gate photons per effective blockade sphere in one gate pulse. This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field. Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.  相似文献   

15.
The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics(QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame.We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.  相似文献   

16.
We study the process of energy conversion from overcritical electric field into electron–positron–photon plasma. We solve numerically Vlasov–Boltzmann equations for pairs and photons assuming the system to be homogeneous and anisotropic. All the 2-particle QED interactions between pairs and photons are described by collision terms. We evidence several epochs of this energy conversion, each of them associated to a specific physical process. Firstly pair creation occurs, secondly back reaction results in plasma oscillations. Thirdly photons are produced by electron–positron annihilation. Finally particle interactions lead to completely equilibrated thermal electron–positron–photon plasma.  相似文献   

17.
In this report we review recent progress in the understanding of the role of chirality in the multi-electron emission. A brief account of the chiral single-electron photoemission is given. In this case the chirality of the experimental set-up is brought about by an initial orientation of the target or/and by specifying a certain projection of the photoelectron spin. The dependence of the photoelectron spectrum on the chirality of the experiment is probed by changing the initial orientation of the target or by inverting the photoelectron spin projection. In a further section we envisage the direct transition of chiral electron pairs from an isotropic bound initial state into a double-continuum state following the absorption of a circularly polarised photon. We work out the necessary conditions under which the spectrum of the correlated photoelectron pair shows a chiral character, i.e. a dependence on the chirality of the exciting photon. The magnitude and the general behaviour of the chiral effects are estimated from simple analytical models and more elaborate numerical methods are presented for a more quantitative predictions. As a further example for the chiral multi-electron emission we study the photoelectron Auger-electron coincidence spectrum. The Auger hole is created by ionising a randomly oriented target by a circular polarised photon. We investigate how the helicity the photon is transferred to the emitted photoelectron pair. The theoretical findings are analysed and interpreted in light of recent experiments. In a final section we focus on the emission of correlated electrons where the initial state is already oriented, e.g. via optical pumping by circularly polarised light. The initial orientation of the atom is transferred to the continuum states following the ionisation of the target by low-energy electrons. We formulate and analyse the theoretical concepts for the transition of the screw sense of the initially bound atomic electron to the continuum electron pair. Numerical methods for the calculations of the cross-sections for the electron-impact ionisation of oriented atoms are presented and their results are contrasted against recent experimental data.  相似文献   

18.
The polarization operator of a photon in a static uniform magnetic field has been studied at photon energies both above and below the threshold of electron–positron pair production by a photon. In the first order of the fine-structure constant α, expressions for the refractive index of a photon with a certain polarization in both low and high fields as compared to the critical field H0 = 4.41 × 1013 G have been obtained. Both the purely quantum range of photon energies, where the particles of a pair are produced at the lowest Landau levels, and the region of applicability of the semiclassical approximation in the case of the population of high energy levels have been considered. A general spectral integral formula has been obtained with divergent threshold terms separated in an explicit form.  相似文献   

19.
In the present paper, compact expressions are derived for the probability of photon emission by a scalar particle and for the probability of creating pairs of scalar particles in an arbitrary plane electromagnetic wave field. Based on these general expressions, the amplitude of elastic scattering of a scalar particle and the amplitude of elastic scattering of a photon are derived by the method of dispersion relations (in the first-order approximation for the fine-structure constant 0 = e 2/4). The real components of these amplitudes determine the radiative corrections for particle masses in the examined fields. Some particular cases of the plane wave field are examined. In particular, the above-indicated amplitudes in the external electromagnetic field being a superposition of a constant crossed field and a plane elliptically polarized electromagnetic wave propagating along the direction orthogonal to the magnetic and electric components of the constant crossed field are investigated. The amplitude of elastic scattering of a scalar particle in an arbitrary plane electromagnetic wave field is also obtained by direct calculations of the corresponding mass operator of the scalar particle in this field.  相似文献   

20.
 Visible fluorescent “plumes” are readily produced when nominally transparent ionic materials are exposed to pulsed UV laser irradiation. Over a wide range of laser fluences where plumes are observed, however, the photon and electron densities are inadequate to support multiphoton ionization and inverse bremsstrahlung, which are often used to explain plasma production and excitation of atomic spectral lines. We present evidence that the great majority of charged particles (electrons and positive ions) comprising the plume at the onset of formation in defect-laden NaNO3 are emitted directly from the surface. A model is described wherein the required electron energy to excite and eventually ionize neutral atoms is provided by electrostatic interactions in the expanding plume. The time evolution of the “overlap” between the expanding charge cloud and thermally emitted neutrals accounts for the time evolution of the atomic line emissions after the laser pulse. Received: 15 August 1996/Accepted: 16 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号