首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A second order effect, involving a change of length or an axial force, is present in hyperelastic cylindrical rods subjected to a finite twist. This second order effect leads to a coupling of torsional and longitudinal waves in such rods when they are subjected to finite deformations. In this paper, effects of such a coupling has been studied for cylindrical rods of finite length. The resulting finite deformation elastodynamic problem has been solved by a finite difference method which is a finite deformation elastodynamic problem has been solved by a finite difference method which is a MacCormack two-step variant of Lax-Wendroff second order accurate scheme. The accuracy of the numerical technique has been calibrated by comparing solutions with reported similarity solutions for semi-infinite rods. New results have been presented for finite rods and different loading conditions.  相似文献   

2.
建立了单层石墨烯等效非局部薄板的一种新的有限元模型,并运用有限元法分析不同边界条件下单层石墨烯振动的小尺度效应。给出了基于弹性应变梯度理论下Kirchhoff板的振动方程。发展了一种4节点24自由度的板单元,用于离散化求解考虑微纳结构尺度效应的高阶微分方程。在研究四边简支板振动时,考虑应变梯度的非局部弹性有限元数值计算结果与理论分析结果相一致。用有限元方法研究了不同尺寸、振动波长、振动模态阶数、边界条件类型以及非局部参数的单层石墨烯振动。  相似文献   

3.
The purpose of this paper is to investigate the effect of a non-uniform mesh in two dimensions (2D). A change in mesh size will, in general, result in spurious refraction (and reflection) which is entirely numerical (rather than physical) in origin. To facilitate the analysis, the mesh geometry has been highly simplified in that only a single change in mesh size is considered. The analysis is based on a finite element wave model. The domain consists of two conterminous regions discernible only by their different nodal spacings in the x-direction. The interface between the two regions is internal to the mesh and is a straight line. The model is based upon the Crank-Nicolson linear finite element scheme applied to the second order wave equation. The results of the analysis are confirmed by numerical experiments. It is shown that under particular numerical conditions total internal reflection may occur and when this is the case, the transmitted wave is evanescent. An analysis of the energy flux associated with the incident, reflected and trasmitted waves shows that energy is conserved across the interface between the two regions.  相似文献   

4.
本文提出了一个在有限水深条件下大尺度物体上二阶波浪荷载的数值计算方法。用表面布源法求二阶散射势的特解,提出了有限水深满足非齐次表面边界条件的格林函数,给出了格林函数的积分和级数形式,研究了表面布源范围对解的影响。  相似文献   

5.
Thermodynamics of non-simple elastic materials   总被引:1,自引:0,他引:1  
Elastic materials whose local state depends upon the first and second order gradients of the deformation, the temperature, its gradient and the time rate of change of the temperature are studied according to an inequality proposed by Green and Laws. It is shown that in such materials either thermal disturbances can propagate with finite speed in the linear theory, and the constitutive quantities do not depend upon the second order gradients of the deformation or the constitutive quantities may depend upon the second order gradients of the deformation and in the linear theory thermal disturbances do not propagate with finite speed. In the latter case the entropy inequality reduces to the Clausius-Duhem inequality.  相似文献   

6.
The polymer cast film process consists of stretching a molten polymer film between a flat die and a drawing roll. Drawing instabilities are often encountered and represent a drastic limitation to the process. Newtonian fluid film stretching stability is investigated using two numerical strategies. The first one is a ‘tracking’ method, which consists of solving Stokes equations in the whole fluid area (extrusion die and stretching path) by finite elements. The interface is determined to satisfy a kinematic equation. A domain decomposition meshing technique is used in order to account for a flow singularity resulting from the change in the boundary conditions between the die flow region and the stretching path region. A linear stability method is then applied to this transient kinematic equation in order to investigate the stability of the stationary solution. The second method is a direct finite element simulation in an extended area including the fluid and the surrounding air. The time‐dependent interface is captured by solving an appropriate level‐set function. The agreement between the two methods is fair. The influence of the stretching parameters (Draw ratio and drawing length) is investigated. For a long stretching distance, a critical Draw ratio around 20 delimitating stable and unstable drawing conditions is obtained, and this agrees well with the standard membrane models, which have been developed 40 years ago. When decreasing the stretching distance, the membrane model is no longer valid. The 2D models presented here point out a significant increase of the critical Draw ratio, and this is consistent with experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We present two‐dimensional numerical simulations of a natural convection problem in an unbounded domain. The flow circulation is induced by a heat island located on the ground and thermal stratification is applied in the vertical direction. The main effect of this stably stratified environment is to induce the propagation of thermal perturbations in the horizontal direction far from the local thermal source. Numerical stationary solutions at Ra?105 are computed in large elongated computational domains: convergence with respect to the domain sizes is investigated at different resolutions. On fine grids, with mesh size , a thermal sponge layer is added at the vertical boundaries: this local damping technique improves the convergence with respect to the domain length. Boussinesq equations are discretized with a second‐order finite volume scheme on a staggered grid combined with a second‐order projection method for the time integration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
变截面梁横向振动固有频率数值计算   总被引:1,自引:0,他引:1  
根据边界条件对变截面梁横向振动四阶变系数微分方程降阶, 形成关于挠度和弯矩的二 阶非显式递推变系数微分方程组; 利用有限差分法, 研究了变截面简支梁横向振动固有频率 的数值计算方法及其精度. 理论分析和正交计算的算例表明: 数值计算算法简单, 计算精度 取决于计算步长的数目和梁横截面竖向渐变率, 与梁宽和梁长无关; 对于给定的计算步长或 数目, 可以估算数值计算的精度; 对于给定的精度要求, 可以确定合理的计算步长或数目.  相似文献   

9.
有限长大间隙环流中同心转子动特性系数研究   总被引:5,自引:0,他引:5  
孙启国  虞烈 《摩擦学学报》2001,21(6):473-477
基于作者建立的大间隙环流中转子运动理论模型,用摄动法推导了有限长大间隙环流流场非线性控制方程的零阶和一阶摄动方程,研究了摄动方程的数值求解方法,并用该数值方法深入研究了有限长大间隙环流中同心转子的动特性系数以及壁面粗糙度、入口压力、长径比和入口预旋等参数的影响,研究结果表明,系统参数对有限长大间隙环流中同心转子动特性系数的影响是流体惯性效应、旋流效应、摩擦耗散效应和Lomakin效应综合影响的因素。  相似文献   

10.
From an internally consistent theory of finite strain plasticity in which are introduced a new stress tensor that includes rigid body rotation and a compatible finite strain tensor amenable to simple geometrical interpretation, a close correlation with experiment is obtained for stress paths of arbitrary composition and direction. Measured material constants are proportional to the elastic shear modulus, as indicated for dislocation theory. At large strain there exists a quantum mechanical structure for the continuum, in which are defined a series of relative reference configurations and second order transitions.  相似文献   

11.
节点梯度光滑有限元配点法   总被引:2,自引:2,他引:0  
配点法构造简单、计算高效, 但需要用到数值离散形函数的高阶梯度,而传统有限元形函数的梯度在单元边界处通常仅具有C$^{0}$连续性,因此无法直接用于配点法分析. 本文通过引入有限元形函数的光滑梯度,提出了节点梯度光滑有限元配点法. 首先基于广义梯度光滑方法,定义了有限元形函数在节点处的一阶光滑梯度值,然后以有限元形函数为核函数构造了有限元形函数的一阶光滑梯度,进而对一阶光滑梯度直接求导并用一阶光滑梯度替换有限元形函数的标准梯度,即完成了有限元形函数二阶光滑梯度的构造.文中以线性有限元形函数为基础的理论分析表明,其光滑梯度不仅满足传统线性有限元形函数梯度对应的一阶一致性条件,而且在均布网格假定下满足更高一阶的二阶一致性条件.因此与传统线性有限元法相比,基于线性形函数的节点梯度光滑有限元法的$L_{2}$和$H_{1}$误差均具有二次精度,即其$H_{1}$误差收敛阶次比传统有限元法高一阶, 呈现超收敛特性.文中通过典型算例验证了节点梯度光滑有限元配点法的精度和收敛性,特别是其$H_{1}$或能量误差的精度和收敛率都明显高于传统有限元法.   相似文献   

12.
作为防弹玻璃夹层材料,PU的动态力学性能一直受到学者们的关注。为准确表征其动态力学性能,本文采用ABAQUS有限元软件对不同摩擦系数下的单轴压缩试验进行数值仿真,分析试样加载端面的摩擦效应和几何尺寸对单轴压缩试验结果的影响;结合高速摄影技术(HSP)与数字图像相关技术(DIC)观测到试样在拉伸试验中的动态变形场和应变场,探讨标距段的应力均衡性;同时对PU材料在不同应变率下的单轴压缩、拉伸力学性能进行测试。结果表明:压缩试样的端面摩擦效应限制横向变形,影响了试样内部的受力分布,使得测量得到的应力值偏大;试样长径比越小,端面摩擦效应的影响越大;在单轴动态拉伸试验中,板状拉伸试样的标距段选取应当考虑两端倒角尺寸。通过测试PU的拉、压力学性能,发现材料具有显著的应变率敏感性。  相似文献   

13.
Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck-Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic-plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions. Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify their effect.  相似文献   

14.
The effective elastic behavior of a transversely isotropic composite made from two incompressible elastic materials is examined. The set of all effective elasticity tensors for transversely isotropic finite rank laminar microstructures is described. The extremal property of this class of microstructures is used to derive a new more precise characterization of the set of effective shear moduli.The perturbation series for the effective elasticity tensor is considered. An explicit formula for the second order perturbation tensor is derived. We describe precisely the set of tensors that correspond to all second order perturbations consistent with transverse isotropy. We apply analytic methods [cf. 27] to show that all second order perturbation tensors are realized by finite rank laminar microstructures.Supported by NSF through Grant DMS-3907658.  相似文献   

15.
动力学平衡方程的辛两步求解算法   总被引:2,自引:1,他引:1  
基于线性多步方法的构造格式和辛变换,给出了动力学方程的两种辛两步法求解格式,它们分别具有四阶精度和二阶精度,但都只有二阶格式的计算量,因此四阶辛两步法具有较大的应用价值。对两种辛两步法和解析解进行了数值比较,证明了二阶精度辛两步格式在一定条件下就是欧拉中点保辛算法,或δ=0.5和α=0.25的Newmark辛格式。  相似文献   

16.
It is shown that, in general, plane acceleration discontinuities propagating into an isotropic elastic material in a state of homogeneous deformation either become infinite in a finite time or decay to zero in an infinite time. Exceptions to this result are transverse discontinuities which propagate along a principal axis of strain without change in strength. Conditions governing the growth of acceleration discontinuities travelling into undeformed material are found to be identical with the thermodynamic conditions derived by Bland [2] for shock propagation. Plane discontinuities of order higher than the second are shown to propagate with constant strength.  相似文献   

17.
In this paper, we present some analytical and numerical results concerning the zero-span testing method, frequently used for quality control of cellulose fiber for papermaking. Of particular interest is the relationship between an apparent modulus obtained from the zero-span testing method and the elastic properties of the fibers. The apparent elasticity modulus is estimated using two energy theorems in elasto-statics in which the role of span length is explored. Analytical results, derived under the assumption that slippage between specimen and clamps does not occur, clearly show that the apparent modulus strongly depends on the span length. This is verified by the numerical results obtained using the finite element method. In addition to the above analysis, the effect of slippage is investigated, also by utilizing the finite element method, and it is found that for a specific case, the contribution from slippage to the total displacement depends strongly on the length of the span. Tensile tests at nominal zero span were conducted in an effort to further validate the analysis with relevant experimental data and it was concluded that there is qualitative agreement between the experimental results and the result of the analysis.  相似文献   

18.
In some technically important structures, finite prebuckling displacements have a profound effect on the bifurcation load. To ignore these displacements, as is done in most instability analyses, is to invite major errors, usually on the unsafe side. A method is presented which approximates this effect without the necessity of solving nonlinear equations. The general theory is developed for any elastic body under conservative loads. The governing equations are subsequently discretized by a finite element approach and it is shown that for planar framed structures, the second order approximation to the buckling load can be found in terms of the standard linear and geometric stiffness matrices of structural analysis; the solution procedure does not require iterations. For illustrative purposes, a computer program was developed for planar structures and the results are compared to the exact solution for the buckling of shallow circular arches.  相似文献   

19.
Standing waves of a Timoshenko beamof finite length and their connectionwith running waves for an infinite beam are considered. It is shown that the principle of a “closed cycle” of a running wave is completely identical to the usual procedure of direct satisfaction from the side of the general solution for an infinite Timoshenko beam, to the boundary conditions of a beam of finite length. The question of the existence of a second frequency spectrum under arbitrary boundary conditions of a beam is discussed. A “relaxed approach” to the concept of the second frequency spectrum is proposed. The results of the theoretical analysis are confirmed by numerical calculations for the Timoshenko beam with elastic supports and elastic sealing of its end sections.  相似文献   

20.
The topological derivative provides the sensitivity of a given cost function with respect to the insertion of a hole at an arbitrary point of the domain. Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with infinitesimal holes. However, for practical applications, we need to insert holes of finite size. Therefore, we consider one more term in the expansion which is defined as the second order topological derivative. In order to present these ideas, in this work we apply the topological-shape sensitivity method as a systematic approach to calculate first as well as second order topological derivative for the Poisson’s equations, taking the total potential energy as cost function and the state equation as constraint. Furthermore, we also study the effects of different boundary conditions on the hole: Neumann and Dirichlet (both homogeneous). Finally, we present some numerical experiments showing the influence of the second order topological derivative in the topological asymptotic expansion, which has two main features: it allows us to deal with hole of finite size and provides a better descent direction in optimization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号