首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In the conventional theory of finite deformations of fibre-reinforced elastic solids it is assumed that the strain-energy is an isotropic invariant function of the deformation and a unit vector A that defines the fibre direction and is convected with the material. This leads to a constitutive equation that involves no natural length. To incorporate fibre bending stiffness into a continuum theory, we make the more general assumption that the strain-energy depends on deformation, fibre direction, and the gradients of the fibre direction in the deformed configuration. The resulting extended theory requires, in general, a non-symmetric stress and the couple-stress. The constitutive equations for stress and couple-stress are formulated in a general way, and specialized to the case in which dependence on the fibre direction gradients is restricted to dependence on their directional derivatives in the fibre direction. This is further specialized to the case of plane strain, and finite pure bending of a thick plate is solved as an example. We also formulate and develop the linearized theory in which the stress and couple-stress are linear functions of the first and second spacial derivatives of the displacement. In this case for the symmetric part of the stress we recover the standard equations of transversely isotropic linear elasticity, with five elastic moduli, and find that, in the most general case, a further seven moduli are required to characterize the couple-stress.  相似文献   

2.
The elastic/viscoplastic constitutive equation which describes deformation law of metal materials was suggested based on no-yield-surface concept and thermal activation theory of dislocation. The equation which takes account of effects of strain-rate, strain history, strain-rate history, hardening and temperature has stronger physical basis. Comparison of the theoretical prediction with experimental results of mechanical behaviours of Ti under conditions of uniaxial stress and room temperature shows good consistency.The Projects Supported by National Natural Science Foundation of China  相似文献   

3.
In this paper a simplified three-dimensional constitutive equation for viscoelastic rubber-like solids is derived by employing a generalized strain measure and an asymptotic expansion similar to that used by Coleman and Noll (1961) in their derivation of finite linear viscoelasticity (FLV) theory. The first term of the expansion represents exactly the time and strain separability relaxation behavior exhibited by certain soft polymers in the rubbery state and in the transition zone between the glassy and rubbery states. The relaxation spectra of such polymers are said to be deformation independent. Retention of higher order terms of the asymptotic expansion is recommended for treating deformation dependent spectra.Certain assumptions for the solid theory are relaxed in order to obtain a constitutive equation for uncross-linked liquid materials which exhibit large elastic recovery properties.Apart from the strain energyW(I1,I 2), which alternatively characterizes the long-time elastic response of solids or the instantaneous elastic response of elastic liquids, only the linear viscoelastic relaxation modulus is required for the first-order theory. Both types of material functions can be obtained, in theory, from simple laboratory testing procedures. The constitutive equations for solids proposed by Chang, Bloch and Tschoegl (1976) and a special form of K-BKZ theory for elastic liquids are shown to be particular cases of the first-order theory.Previously published experimental data on a cross-linked styrene-butadiene rubber (SBR) and an uncross-linked polyisobutylene (PIB) rubber is used to corroborate the theory.  相似文献   

4.
The paper is devoted to the study of wave propagation through materials with internal state variables under two main assumptions: finite speed of propagation and symmetry of acceleration waves. Additional constitutive assumptions are also used: heat flux does not depend on the temperature gradient and the time-derivatives of internal state variables are linear functions of the temperature gradient. Under all these hypotheses, in the neighborhood of a strong equilibrium state, one finds four real and symmetric possible acceleration waves, at least two of them being coupled waves, and heat flux results an internal state variable. All these results are obtained in the general three-dimensional case. As an illustration, the isotropic linear theory is considered, where both acceleration and shock waves are treated.  相似文献   

5.
Internal dissipation always occurs in irreversible inelastic deformation processes of materials. The internal dissipation inequalities (specific mathematical forms of the second law of thermodynamics) determine the evolution direction of inelastic processes. Based on different internal dissipation inequalities several finite strain inelastic constitutive laws have been formulated for instance by Simo [Simo, J.C., 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering 99, 61–112]; Simo and Miehe [Simo, J.C., Miehe, C., 1992. Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering 98, 41–104]; Lion [Lion, A., 1997. A physically based method to represent the thermo-mechanical behavior of elastomers. Acta Mechanica 123, 1–25]; Reese and Govindjee [Reese, S., Govindjee, S., 1998. A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures 35, 3455–3482]; Lin and Schomburg [Lin, R.C., Schomburg, U., 2003. A finite elastic–viscoelastic–elastoplastic material law with damage: theoretical and numerical aspects. Computer Methods in Applied Mechanics and Engineering 192, 1591–1627]; Lin and Brocks [Lin, R.C., Brocks, W., 2004. On a finite strain viscoplastic theory based on a new internal dissipation inequality. International Journal of Plasticity 20, 1281–1311]; and Lin and Brocks [Lin, R.C., Brocks, W., 2005. An extended Chaboche’s viscoplastic law at finite strains: theoretical and numerical aspects. Journal of Materials Science and Technology 21, 145–147]. These constitutive laws are consistent with the second law of thermodynamics. As the internal dissipation inequalities are described in different configurations or coordinate systems, the related constitutive laws are also formulated in the corresponding configurations or coordinate systems. Mathematically, these constitutive laws have very different formulations. Now, a question is whether the constitutive laws provide identical constitutive responses for the same inelastic constitutive problems. In the present work, four types of finite strain viscoelastic and endochronically plastic laws as well as three types of J2-plasticity laws are formulated based on four types of dissipation inequalities. Then, they are numerically compared for several problems of homogeneous or complex finite deformations. It is demonstrated that for the same inelastic constitutive problem the stress responses are identical for deformation processes without rotations. In the simple shear deformation process with large rotation, the presented viscoelastic and endochronically plastic laws also show almost identical stress responses up to a shear strain of about 100%. The three laws of J2-plasticity also produce the same shear stresses up to a shear strain of 100%, while different normal stresses are generated even at infinitesimal shear strains. The three J2-plasticity laws are also compared at three complex finite deformation processes: billet upsetting, cylinder necking and channel forming. For the first two deformation processes similar constitutive responses are obtained, whereas for the third deformation process (with large global rotations) significant differences of constitutive responses can be observed.  相似文献   

6.
Peridynamic States and Constitutive Modeling   总被引:2,自引:0,他引:2  
A generalization of the original peridynamic framework for solid mechanics is proposed. This generalization permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. This extends the types of material response that can be reproduced by peridynamic theory to include an explicit dependence on such collectively determined quantities as volume change or shear angle. To accomplish this generalization, a mathematical object called a deformation state is defined, a function that maps any bond onto its image under the deformation. A similar object called a force state is defined, which contains the forces within bonds of all lengths and orientation. The relation between the deformation state and force state is the constitutive model for the material. In addition to providing a more general capability for reproducing material response, the new framework provides a means to incorporate a constitutive model from the conventional theory of solid mechanics directly into a peridynamic model. It also allows the condition of plastic incompressibility to be enforced in a peridynamic material model for permanent deformation analogous to conventional plasticity theory.   相似文献   

7.
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman–Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.  相似文献   

8.
This paper deals with the propagation of acceleration waves in constrained linear elastic materials, within the framework of the so-called linearized finite theory of elasticity, as defined by Hoger and Johnson in [12, 13]. In this theory, the constitutive equations are obtained by linearization of the corresponding finite constitutive equations with respect to the displacement gradient and significantly differ from those of the classical linear theory of elasticity. First, following the same procedure used for the constitutive equations, the amplitude condition for a general constraint is obtained. Explicit results for the amplitude condition for incompressible and inextensible materials are also given and compared with those of the classical linear theory of elasticity. In particular, it is shown that for the constraint of incompressibility the classical linear elasticity provides an amplitude condition that, coincidently, is correct, while for the constraint of inextensibility the disagreement is first order in the displacement gradient. Then, the propagation condition for the constraints of incompressibility and inextensibility is studied. For incompressible materials the propagation condition is solved and explicit values for the squares of the speeds of propagation are obtained. For inextensible materials the propagation condition is solved for plane acceleration waves propagating into a homogeneously strained material. For both constraints, it is shown that the squares of the speeds of propagation depend by terms that are first order in the displacement gradient, while in classical linear elasticity they are constant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Expressions for thermodynamic potentials (internal energy, Helmholtz energy, Gibbs energy and enthalpy) of a thermoelastic material are developed under the assumption of small strains and finite changes in the thermal variable (temperature or entropy). The literature provides expressions for the Helmholtz energy in terms of strain and temperature, most often as expansions to the second order in strain and to a higher order in temperature changes, which ensures an affine stress–strain relation and a certain temperature dependence of the moduli of the material. Expressions are here developed for the four potentials in terms of all four possible pairs of independent variables. First, an expression is obtained for each potential as a quadratic function of its natural mechanical variable with coefficients depending on its natural thermal variable that are identified in terms of the moduli of the material. The form of the coefficients’ dependence on the thermal variable is not specified beforehand so as to obtain the most general expressions compatible with an affine stress–strain relation. Then, from each potential expressed in terms of its natural variables, expressions are derived for the other three potentials in terms of these same variables using the Gibbs–Helmholtz equations. The paper provides a thermodynamic framework for the constitutive modeling of thermoelastic materials undergoing small strains but finite changes in the thermal variables, the properties of which are liable to depend on the thermal variables.  相似文献   

10.
The constitutive relations of a theory of thermo-visco-elastic-plastic continuum have been formulated in Lagrangian form. The Lagrangian strains, strain rates, temperature, temperature rate and temperature gradients are considered as the independent constitutive variables. Three internal state variables (plastic strain tensor, back strain tensor and a scalar hardening parameter) are also incorporated. The axioms of objectivity and equipresence are followed. The Clausius–Duhem inequality is taken as the second law of thermodynamics. Several special theories are deduced based on material symmetries and/or conventionally adopted assumptions. The applications to the formation of shear bands and dynamic crack propagation are discussed.  相似文献   

11.
A phenomenological model for evolving anisotropy at large strains is presented. The model is formulated using spatial quantities and the anisotropic properties of the material is modeled by including structural variables. Evolution of anisotropy is accounted for by introducing substructural deformation gradients which are linear maps similar to the usual deformation gradient. The evolution of the substructural deformation gradients is governed by the substructural plastic velocity gradients in a manner similar to that for the continuum. Certain topics related to the numerical implementation are discussed and a simple integration scheme for the local constitutive equations is developed. To demonstrate the capabilities of the model it is implemented into a finite element code. Two numerical examples are considered: deformation of uniform plate with circular hole and the drawing of a cup. In the two examples it is assumed that initial cubic material symmetry applies to both the elastic and plastic behavior. To be specific, a polyconvex Helmholtz free energy function together with a yield function of quadratic type is adopted.  相似文献   

12.
A thermodynamic model of turbulent motions in a granular material   总被引:1,自引:1,他引:0  
This paper is devoted to a thermodynamic theory of granular materials subjected to slow frictional as well as rapid flows with strong collisional interactions. The microstructure of the material is taken into account by considering the solid volume fraction as a basic field. This variable is of a kinematic nature and enters the formulation via the balance law of the configurational momentum, including corresponding contributions to the energy balance, as originally proposed by Goodman and Cowin [1], but modified here. Complemented by constitutive equations, the emerging field equations are postulated to be adequate for motions, be they laminar or turbulent, if the resolved length scales are sufficiently small. On large length scales the sub-grid motion may be interpreted as fluctuations, which manifest themselves in correspondingly filtered equations as correlation products, like in the turbulence theory. We apply an ergodic (Reynolds) filter to these equations and thus deduce averaged equations for the mean motions. The averaged equations comprise balances of mass, linear and configurational momenta, energy, and turbulent kinetic energy as well as turbulent configurational kinetic energy. They are complemented by balance laws for two internal fields, the dissipation rates of the turbulent kinetic energy and of the turbulent configurational kinetic energy. We formulate closure relations for the averages of the laminar constitutive quantities and for the correlation terms by using the rules of material and turbulent objectivity, including equipresence. Many versions of the second law of thermodynamics are known in the literature. We follow the Müller-Liu theory and extend Müllers entropy principle to allow the satisfaction of the second law of thermodynamics for both laminar and turbulent motions. Its exploitation, performed in the spirit of the Müller-Liu theory, delivers restrictions on the dependent constitutive quantities (through the Liu equations) and a residual inequality, from which thermodynamic equilibrium properties are deduced. Finally, linear relationships are proposed for the nonequilibrium closure relations.Received: 21 March 2003, Accepted: 1 September 2003, Published online: 11 February 2004PACS: 05.70.Ln, 61.25.Hq, 61.30.-vCorrespondence to: I. Luca  相似文献   

13.
In the vicinity of the glass transition, glass-forming materials exhibit pronounced frequency-dependent changes in the mechanical material properties, the thermal expansion behaviour and the specific heat. The frequency dependence becomes apparent under harmonic stress, strain or temperature excitations. The Prigogine-Defay ratio is a characteristic number which connects the changes in magnitude of these quantities at the glass transition. In order to represent the thermoviscoelastic properties of glass-forming materials in continuum mechanics, a three-dimensional approach which is based on the Gibbs free energy as thermodynamic potential is developed in this article. The Gibbs free energy depends on the stress tensor, the temperature and a set of internal variables which is introduced to take history-dependent phenomena into account. In the vicinity of an equilibrium reference state, the specific Gibbs free energy is approximated up to second order terms. Evaluating the Clausius-Duhem inequality, the constitutive relations for the strain tensor, the entropy and the internal variables are derived. In comparison with other approaches, the entropy, the strain tensor and the internal variables are functionals not only of the stress tensor but also of the temperature. Applying harmonic temperature- or stress-controlled excitations, complex frequency-dependent relations for the specific heat under constant stress, for the thermal expansion coefficients as well as for the dynamic mechanical compliance are obtained. The frequency-dependence of these quantities depicts the experimentally observed behaviour of glass-forming materials as published in literature. Under the assumption of isotropic material behaviour, it is shown that the developed theory is compatible with the Prigogine-Defay inequality for arbitrary values of the material parameters.  相似文献   

14.
Extended irreversible thermodynamics provides an evolution equation for the viscous pressure tensor which reduces to the Jeffrey's constitutive equation in the long-wave limit. in contrast with Jeffrey's equation, the equation obtained in extended irreversible thermodynamics leads to finite speed of propagation for shear pulses. The nonlocal effects are included into the theory by allowing the entropy to depend on higher-order fluxes, instead of spatial gradients. The use of the former ones is clearly advantageous in the high-frequency domain.  相似文献   

15.
For polycrystalline ice, an isothermal flow law is derived from microscopic considerations concerning constitutive equations and kinematic assumptions. On the basis of an elasto-plastic decomposition of the deformation gradient on the grain level and by assuming a continuous distribution of different orientated grains in the vicinity of each material point the classical macroscopic field quantities are obtained by calculating the weighted mean values of the associated microscopic quantities. The weighting function is represented by a so called Orientation Distribution Function (ODF). For the general two dimensional (plane and rotationally symmetric) flow regime analytical representations of the ODF are derived under the assumption of a uniform stress distribution over all polycrystals (Sachs-Condition) and a plane or rotationally symmetric orientation distribution. Additionally, the influence of the macroscopic constitutive relations on the microscopic level is restricted to isotropic parts only. Simple examples are used to demonstrate the ability of the ODF to perform the evolving texture. The microscopic constitutive relation for the dissipation potential is assumed to be an objective function of the stress deviator and is expressed as a polynomial law up to the power , as proposed by Lliboutry (1993). A second order structure tensor which depends on the ODF is introduced to consider induced anisotropy. The resulting macro fluidities (inverse viscosities) are then calculated from the analytical representation of the ODF for the case of uniaxial loading underlying linear and nonlinear material behaviour. Received March 30, 1998  相似文献   

16.
17.
Material frame indifference implies that the solution in non-linear elasticity theory for a connected body rigidly rotated at its border is a rigid, stress-free, deformation. If the same problem is considered within linear elasticity theory, considered as an approximation to the true elastic situation, one should expect that if the angle of rotation is small, the body still undergoes a rigid deformation while the corresponding stress, though not zero, remains consistently small. Here, we show that this is true, in general, only for homogeneous bodies. Counterexamples of inhomogeneous bodies are presented for which, whatever small the angle of rotation is, the linear elastic solution is by no means a rigid rotation (in a particular case it is an “explosion”) while the stress may even become infinite. If the same examples are re-interpreted as problems in an elasticity theory based upon genuinely linear constitutive relations which retain their validity also for finite deformations, it is shown that they would deliver constraint reaction forces that are not in equilibrium in the actual, deformed, state. This furnishes another characterization of the impossibility of an exact linear constitutive theory for elastic solids with zero residual stress.   相似文献   

18.
A constitutive model in finite viscoelasticity   总被引:1,自引:0,他引:1  
A new constitutive model is suggested for the viscoelastic behavior of rubber-like materials at finite strains. The model treats a viscoelastic medium as a system with a variable number of purely elastic links, which can arise and collapse due to micro-Brownian motion of molecules.Assuming that the processes of birth and death for elastic links are independent of stresses, we obtain operator linear constitutive equations in finite viscoelasticity. According to this model, elastic and viscous effects may be distinguished and described independently of each other by a relaxation measure and a strain energy density.The potential energy of deformations is assumed to depend on the principal invariants of the relative Finger tensor of strains. Unlike the standard approach, we do not suggest any expression for the strain energy densitya priori, but suppose that this function is presented as a sum of two functions of one variable which are found by fitting experimental data.The proposed approach allows results of several experiments (uniaxial tension, biaxial tension, and torsion) for styrene butadiene rubber and butyl rubber to be predicted correctly.  相似文献   

19.
A higher order zig-zag shell theory based on general tensor formulation is developed to refine the predictions of the mechanical, thermal, and electric behaviors. All the complicated curvatures of surface including twisting curvatures can be described in a geometrically exact manner in the present shell theory because the present theory is based on the geometrically exact surface representation. The in-surface displacement fields are constructed by superimposing the linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface free conditions of transverse shear stresses. Thus the proposed theory has only seven primary displacement unknowns and they do not depend upon the number of layers. To assess the validity of present theory, the developed theory is evaluated under the thermal and electric load as well as under the mechanical load of composite cylindrical shells. Through the numerical examples, it is demonstrated that the proposed smart shell theory is efficient because it has the minimal degrees of freedom. The present theory is suitable in the predictions of deformation and stresses of thick smart composite shells under the mechanical, thermal, and electric loads combined.  相似文献   

20.
本文给出了热力耦合的热弹粘塑性材料的有限元分析方法,并讨论与之相关的时间积分算法,为改善线性插值函数所引起的不协调性及提高运算速度,应力协调迭代理论被引入相应的算法及程序中,最后对非绝热过程中热-塑变形局部化及激光诱导的剪切变形集中进行了数值模拟,其结果与理论分析有良好的吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号