首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structural and electrical characteristics of polyelectrolyte complex micelles (PCMs) formed by mixing of oppositely charged double hydrophilic copolymers are studied by means of molecular dynamics simulations. In mixtures of linear diblock copolymers we found that the preferential aggregation number Np of PCMs is a universal function of the ratio γ± of the total positive to total negative charges of the mixture. The addition of divalent salts ions induces a secondary micellization. In mixtures of copolymers bearing a common neutral thermoresponsive block, micelles with contracted corona consisting of thermoresponsive blocks and complex polyelectrolyte core are formed at low salt concentration and temperature far away the biphasic regime. At high salt concentration and temperature in the biphasic regime, reversed micelles are obtained. In equimolar mixtures of linear copolymers with miktoarm stars we found that Np of PCMs decreases as the number of charged branches of miktoarm copolymer increases. The shape of micelles progressively changes from spherical to worm-like with the increase of number of branches of miktoarm copolymers. Our findings are in full agreement with existing experimental and theoretical predictions and provides new and additional insights.  相似文献   

2.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

3.
4.
Complex coacervation core micelles were prepared with various polyelectrolytes and oppositely charged diblock copolymers. The diblock copolymers consist of a charged block and a water-soluble neutral block. Our experimental technique was dynamic light scattering in combination with titrations. At mixing ratios where the excess charge of the polyelectrolyte mixture is approximately zero, micelles may be formed. The colloidal stability of these micelles depends on the block lengths of the diblock copolymers and the molecular weight of the homopolymers. In addition, the chemical nature of the corona blocks and nature of the ionic groups of the polyelectrolytes also influence the stability and aggregation mechanism. A corona block that is three times longer than the core block is a prerequisite for stable micelles. If this ratio is further increased, the molecular weight of the homopolymers as well as the type of the ionic groups starts to play a major role. With very asymmetric block length ratios, no micelles are formed. In addition, if the neutral block is too short, the polymeric mixture forms a macroscopic precipitate. With a constant core block, the aggregation number decreases with increasing corona block length, as is predicted by scaling models for polymeric micelles with a neutral corona.  相似文献   

5.
Microstructures self-assembled by amphiphilic ABC π-shaped block copolymers in dilute solution have been investigated by self-consistent field theory. The effects of architectural parameters and the interaction strength among the three blocks have been studied systematically. Our calculation results show that the distance of the two graft blocks has stronger effect than the length of graft blocks and the position of the first graft point on the phase behavior. The interaction strength among the three blocks is another important factor in controlling the resulting microstructures. Compound-core, multicompartment, and multicore micelles are observed in the case of π-shaped ABC block copolymers with hydrophilic backbone block A and hydrophobic graft blocks B and C. Core-shell-corona, incomplete skin-layered and hamburger micelles are formed when graft block C is hydrophilic and blocks A and B are hydrophobic. The wormlike multicore micelles have drawn our attention. We find that the morphology of wormlike multicore micelle can be controlled by changing the distance of the two graft blocks of the π-shaped block copolymers. In all of the wormlike multicore micelles, the streamline wormlike micelle is more stable than other wormlike micelles from the free energy analysis.  相似文献   

6.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

7.
A series of thermo-responsive cationic triblock copolymers composed of methoxy-poly(ethylene glycol) (MPEG, hydrophilic), poly(N-isopropylacrylamide) (PNIPAAM, temperature sensitive), and poly((3-acrylamidopropyl) trimethyl ammonium chloride) (PN(+), cationic) has been investigated as a function of temperature and ionic strength. In the MPEG-b-PNIPAAM-b-PN(+) copolymers, the MPEG block length is constant, and the lengths of the PNIPAAM and PN(+) blocks are varied. The solubility of the PNIPAAM block decreases with increasing temperature, and the triblock copolymer thus provides the possibilities of studying micelles with both neutral and charged blocks in the micelle corona as well as the interplay between these two blocks as the electrostatic interactions are varied by addition of salt. Investigation of the systems by densitometry and small-angle X-ray scattering (SAXS) in a temperature range from 20 to 70 °C gave detailed information on the behavior both below and above the critical micelle temperature (CMT). A clear effect of the addition of salt is observed in both the apparent partial specific volume, obtained from the densitometry measurements, and the SAXS data. Below the CMT, the single polymers can be described as Gaussian chains, for which the repulsive interchain interactions, originating from the charged PN(+) block, have to be taken into account in salt-free aqueous solution. Increasing the salt concentration of the solution to 30 mM NaCl leads to an increase in the apparent partial specific volume, and the electrostatic repulsive interchain interactions between the single polymers vanish. Raising the temperature results in micelle formation, except for the copolymer with only 20 NIPAAM units. The SAXS data show that the polymer with the medium PNIPAAM block length forms spherical micelles, whereas the polymer with the longest PNIPAAM block forms cylindrical micelles. Increasing the temperature further above the CMT results in an increase in the micellar aggregation number for both of the polymers forming spherical and cylindrical micelles. The addition of salt to the solution also influences the aggregates formed above the CMT. Overall, the micelles formed in the salt solution have a smaller cross-section radius than those in aqueous solution without added salt.  相似文献   

8.
两亲嵌段共聚物可以在水溶液中自组装形成亲水性链段为外壳、疏水性链段为内核的胶束,这种胶束能够用作药物载体而引起人们极大的关注。本文综述了两亲嵌段共聚物胶束用作医用材料的研究进展,主要内容包括医用两亲嵌段共聚物的种类,胶束化,以及用作诊断试剂载体、药物缓释载体、靶向载体等。两亲嵌段共聚物胶束用作磁共振造影剂载体有利于肿瘤的诊断,用作药物缓释载体可以有效增溶难溶性抗肿瘤药物,延长药物在体内的血液循环时间。此外,通过对胶束表面进行修饰或者施加外场,还可以实现靶向功能。因此,两亲嵌段共聚物胶束在医用材料领域有着广阔的发展前景。  相似文献   

9.
Double hydrophilic block copolymers poly(ethylene oxide)-b-polyglycidol were synthesized using living anionic polymerization. The polyglycidol blocks were made hydrophobic by the esterification of a part of hydroxyl groups with cinnamic acid, thus simultaneously attaching UV-sensitive double bonds to the polymer backbone. The block copolymers were found to spontaneously associate in aqueous solution forming well-defined micelles, where the corona of the micelles was formed of EO units and the cores consisted of hydrophobic glycidyl cinnanamate units. The critical micelle concentration was determined by light-scattering measurements and fluorescence spectroscopy. Stabilization of micelles was obtained by covalently crosslinking the cores of polyether micelles formed from amphiphilic block copolymers of the type poly(ethylene oxide)-b-poly(glycidol-co-glycidyl cinnamate) (denoted EO(113)-b-(Gl(33)-co-GlCA(33-x))). To obtain stable nanoparticles double bonds of cinnamate units contained in core were crosslinked under UV irradiation. The kinetics of the stabilization process was investigated using SEC-MALLS and UV spectroscopy. The parameters of the micelles and nanogels were calculated from the light-scattering data.  相似文献   

10.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

11.
The structural and electrical characteristics of polyelectrolyte micelles formed by diblock copolymers with one charged block and one solvophobic block are studied by the means of molecular dynamics simulations using the Primitive model at different Bjerrum lengths. The properties of interest are the mean aggregation number, the shape, the electrical potential as a function of the distance of the micelle's center of mass and the zeta potential. We found that for partially charged short A blocks the micelles’ mass distribution function is at least bimodal, indicating the coexistence of small and large micelles in agreement with theoretical and experimental findings. The zeta potential is not a monotonic function of the length of the charged block. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 924–934  相似文献   

12.
Using a coarse-grained model, we performed molecular dynamics simulations of the electrostatically driven self-assembly of strongly charged polyelectrolytes and diblock copolymers composed of oppositely charged and neutral blocks. Stoichiometric micelle-like complexes formed in a dilute solution represent cylindrical brushes whose conformation is determined by the linear charge density on the polyelectrolyte and by temperature. The core-shell morphology of the cylindrical brushes is proven. The core of these anisotropic micelles consists of an insoluble complex coacervate formed by the ionic chains and a shell made up of the neutral solvophilic blocks. As the concentration of macromolecules increases, the orientational ordering of ionic micelles takes place. The complexation can induce effective steric stiffening of the polyelectrolyte chains.  相似文献   

13.
The self-association characteristics of very short and well-defined poly(butyl acrylate)-b-poly(acrylic acid) (PBA-b-PAA) block copolymers in water have been studied. The diblocks are asymmetric with the PBA block longer than the PAA block, giving rise to hollow sphere morphology. This is affirmed by experimental data and theoretical evaluations of the hydrophilic and hydrophobic domain sizes, as well as a value close to 1 for the ratio of the hydrodynamic to the gyration radius of the micelles. Besides, the untypically short PBA blocks (polymerization number around 15) render the micelles dynamic. Indications in support include among others the following: the CMC (critical micellar concentration) values depend, together with the aggregation numbers and the micellar sizes, on the block lengths, as predicted by theory; above the CMC their sizes are concentration-independent, while the micelles disappear below CMC. A comparison was also made with a random PBA-co-PAA copolymer of similar length, which self-associates at an apparent CMC 1 order of magnitude larger than those of the block copolymers, but the size of the formed micelles depends on the concentration.  相似文献   

14.
Complexes between sodium (sulfamate-carboxylate)isoprene/ethylene oxide double hydrophilic diblock copolymers (SCIEO) and dodecyltrimethylammonium bromide (DTMAB), as well as quaternized poly(2-vinylpyridine) (QP2VP), were studied in aqueous solutions, at pH 7. The complexes are formed due to electrostatic interactions between the anionic groups of the polyelectrolyte block of the copolymers and the cationic groups of the surfactant or the homopolyelectrolyte. The structure of the complexes was investigated as a function of the mixing ratio of the two components in solution and ionic strength by static, dynamic, and electrophoretic light scattering, atomic force microscopy, and fluorescence spectroscopy. The mass and size of the complexes depend on the mixing ratio between the components. A transition from intrachain to an interchain association was observed for block copolymer/ surfactant complexes. SCIEO/QP2VP complexes were found to respond to increasing concentrations of added salt. Spherical and ellipsoid shaped complexes with a core-shell micellar like structure were formed in the systems studied.  相似文献   

15.
The interaction of amphiphilic block copolymers comprising an anionic block (polyacrylate or polymethacrylate) and a hydrophobic block (polystyrene, poly(butyl acrylate) or polyisobutylene) with lightly crosslinked poly(N,N-diallyl-N,N-dimethylammonium chloride) is studied for the first time. It is shown that the cationic hydrogel can sorb anionic amphiphilic block copolymers via electrostatic interaction with the corona of block copolymer micelles. The rate of sorption of block copolymer polyelectrolytes is significantly lower than the rate of sorption of linear polyions and is controlled by the lengths of the hydrophilic and hydrophobic blocks and the flexibility of the latter blocks. The sorption of amphiphilic block copolymers is accompanied by their self-assembly in the polycomplex gel and formation of a continuous hydrophobic layer impermeable to water and the low-molecular-mass salt dissolved in it.  相似文献   

16.
以聚(ε-己内酯-b-L-丙交酯)/聚乙二醇单甲醚(P(CL-b-LLA)-b-mPEG)和聚(ε-己内酯-b-D,L-丙交酯)/聚乙二醇单甲醚(P(CL-b-DLLA)-b-mPEG)两种两亲嵌段共聚物为载体,选择了物理状态完全不同、而疏水性相近的吲哚美辛和维生素E为模型药物,研究了药物包载对高分子胶束形态的影响.发现两种药物在高分子胶束内部的增溶均会导致胶束形态发生显著改变,变化行为与胶束内核的结晶性和药物疏水性有关.另外,还研究了两种嵌段共聚物的载药性能,发现非结晶性疏水内核共聚物的药物包载率明显大于可结晶疏水内核的共聚物.  相似文献   

17.
Well‐defined amphiphilic block copolymers were prepared by ring opening metathesis polymerization and their stimuli responsive behavior of formed micelles in aqueous solution was investigated. The hydrophobic core of the micelles consists of either a poly[5,6‐bis(ethoxymethyl)bicyclo[2.2.1]hept‐2‐ene]‐block with a glass transition Tg at room temperature or a poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐diylbis (phenylmethanone)] with a Tg of 143 °C. For the polyelectrolyte shell, the precursor block poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐dicarboxyclic tert‐butylester] was transformed into the free acidic block by cleavage of the tert‐butyl groups using trifluoroacetic acid. Micellar solutions were prepared by dialysis, dissolving the copolymers in dimethyl sulfoxide which was subsequently replaced by water. All polymers form micelles with radii between 10 and 20 nm at a pH‐value below 5, where the carboxylic acid groups are in the protonated state. The block copolymer micelles show a strong increase of the hydrodynamic radius with increasing pH‐value, due to the repulsion among the formed carboxylate anions resulting in a stretching of the polymer chains. In this state, the micelles exhibit responsive behavior to ionic strength where a contraction of the micelles is observed as the carboxylate charges are balanced by sodium ions, whereas no changes of the hydrodynamic radius on addition of salt are observed at low pH. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1178–1191, 2009  相似文献   

18.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

19.
Complexation in solutions of strongly charged polyelectrolytes and diblock copolymers composed of oppositely charged and neutral blocks were studied via the molecular dynamics method. Stoichiometric micellar complexes formed in a dilute solution represent cylindrical brushes whose conformation is determined by the linear charge density on the polyelectrolyte and by temperature. As the concentration of macromolecules increases, the orientational ordering of anisotropic ionic micelles takes place. The complexation can induce the stiffening of the polyelectrolyte chain.  相似文献   

20.
Hybrid polyion complex (HPIC) micelles are nanoaggregates obtained by complexation of multivalent metal ions by double hydrophilic block copolymers (DHBC). Solutions of DHBC such as the poly(acrylic acid)-block-poly(acrylamide) (PAA-b-PAM) or poly(acrylic acid)-block-poly(2-hydroxyethylacrylate) (PAA-b-PHEA), constituted of an ionizable complexing block and a neutral stabilizing block, were mixed with solutions of metal ions, which are either monoatomic ions or metal polycations, such as Al(3+), La(3+), or Al(13)(7+). The physicochemical properties of the HPIC micelles were investigated by small angle neutron scattering (SANS) and dynamic light scattering (DLS) as a function of the polymer block lengths and the nature of the cation. Mixtures of metal cations and asymmetric block copolymers with a complexing block smaller than the stabilizing block lead to the formation of stable colloidal HPIC micelles. The hydrodynamic radius of the HPIC micelles varies with the polymer molecular weight as M(0.6). In addition, the variation of R(h) of the HPIC micelle is stronger when the complexing block length is increased than when the neutral block length is increased. R(h) is highly sensitive to the polymer asymmetry degree (block weight ratio), and this is even more true when the polymer asymmetry degree goes down to values close to 3. SANS experiments reveal that HPIC micelles exhibit a well-defined core-corona nanostructure; the core is formed by the insoluble dense poly(acrylate)/metal cation complex, and the diffuse corona is constituted of swollen neutral polymer chains. The scattering curves were modeled by an analytical function of the form factor; the fitting parameters of the Pedersen's model provide information on the core size, the corona thickness, and the aggregation number of the micelles. For a given metal ion, the micelle core radius increases as the PAA block length. The radius of gyration of the micelle is very close to the value of the core radius, while it varies very weakly with the neutral block length. Nevertheless, the radius of gyration of the micelle is highly dependent on the asymmetry degree of the polymer: if the neutral block length increases in a large extent, the micelle radius of gyration decreases due to a decrease of the micelle aggregation number. The variation of the R(g)/R(h) ratio as a function of the polymer block lengths confirms the nanostructure associating a dense spherical core and a diffuse corona. Finally, the high stability of HPIC micelles with increasing concentration is the result of the nature of the coordination complex bonds in the micelle core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号