首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that under suitable conditions on the parameters the positive equilibrium is asymptotically stable when the hunting delay is less than a certain critical value and unstable when the hunting delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theorem for functional differential equations (FDEs), we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the hunting delay crosses through a sequence of critical values. In particular, by applying the normal form theory and the center manifold reduction for FDEs, an explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.  相似文献   

2.
The dynamics of a diffusive Nicholson’s blowflies equation with a finite delay and Dirichlet boundary condition have been investigated in this paper. The occurrence of steady state bifurcation with the changes of parameter is proved by applying phase plane ideas. The existence of Hopf bifurcation at the positive equilibrium with the changes of specify parameters is obtained, and the phenomenon that the unstable positive equilibrium state without dispersion may become stable with dispersion under certain conditions is found by analyzing the distribution of the eigenvalues. By the theory of normal form and center manifold, an explicit algorithm for determining the direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived.  相似文献   

3.
In this paper, we investigate a reaction–diffusion–advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction–diffusion–advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.  相似文献   

4.
The present paper is concerned with a delayed predator–prey diffusion system with a Beddington–DeAngelis functional response and homogeneous Neumann boundary conditions. If the positive constant steady state of the corresponding system without delay is stable, by choosing the delay as the bifurcation parameter, we can show that the increase of the delay can not only cause spatially homogeneous Hopf bifurcation at the positive constant steady state but also give rise to spatially heterogeneous ones. In particular, under appropriate conditions, we find that the system has a Bogdanov–Takens singularity at the positive constant steady state, whereas this singularity does not occur for the corresponding system without diffusion. In addition, by applying the normal form theory and center manifold theorem for partial functional differential equations, we give normal forms of Hopf bifurcation and Bogdanov–Takens bifurcation and the explicit formula for determining the properties of spatial Hopf bifurcations.  相似文献   

5.
In this paper, we consider the dynamics of a delayed diffusive predator-prey model with herd behavior and hyperbolic mortality under Neumann boundary conditions. Firstly, by analyzing the characteristic equations in detail and taking the delay as a bifurcation parameter, the stability of the positive equilibria and the existence of Hopf bifurcations induced by delay are investigated. Then, applying the normal form theory and the center manifold argument for partial functional differential equations, the formula determining the properties of the Hopf bifurcation are obtained. Finally, some numerical simulations are also carried out and we obtain the unstable spatial periodic solutions, which are induced by the subcritical Hopf bifurcation.  相似文献   

6.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

7.
In this paper, we investigate the predator–prey model equipped with Fickian diffusion and memory-based diffusion of predators. The stability and bifurcation analysis explores the impacts of the memory-based diffusion and the averaged memory period on the dynamics near the positive steady state. Specifically, when the memory-based diffusion coefficient is less than a critical value, we show that the stability of the positive steady state can be destabilized as the average memory period increases, which leads to the occurrence of Hopf bifurcations. Moreover, we also analyze the bifurcation properties using the central manifold theorem and normal form theory. This allows us to prove the existence of stable spatially inhomogeneous periodic solutions arising from Hopf bifurcation. In addition, the sufficient and necessary conditions for the occurrence of stability switches are also provided.  相似文献   

8.
Delayed feedbacks are quite common in many physical and biological systems and in particular many physiological systems. Delay can cause a stable system to become unstable and vice versa. One of the well-studied non-biological chemical oscillators is the Belousov-Zhabotinsky(BZ) reaction. This paper presents an investigation of stability and Hopf bifurcation of the Oregonator model with delay. We analyze the stability of the equilibrium by using linear stability method. When the eigenvalues of the characteristic equation associated with the linear part are pure imaginary, we obtain the corresponding delay value. We find that stability of the steady state changes when the delay passes through the critical value. Then, we calculate the explicit formulae for determining the direction of the Hopf bifurcation and the stability of these periodic solutions bifurcating from the steady states, by using the normal form theory and the center manifold theorem. Finally, numerical simulations results are given to support the theoretical predictions by using Matlab and DDE-Biftool.  相似文献   

9.
A reaction-diffusion population model with a general time-delayed growth rate per capita is considered. The growth rate per capita can be logistic or weak Allee effect type. From a careful analysis of the characteristic equation, the stability of the positive steady state solution and the existence of forward Hopf bifurcation from the positive steady state solution are obtained via the implicit function theorem, where the time delay is used as the bifurcation parameter. The general results are applied to a “food-limited” population model with diffusion and delay effects as well as a weak Allee effect population model.  相似文献   

10.
Under steady fluid loading, elastic structures are liable to exhibit dynamic bifurcations to limit cycles: such unimodal instabilities are referred to as galloping while such multimodal instabilities are referred to as flutter. The trace of limit cycles energing from the critical equilibrium state can be either super-critical and stable, in analogy with a stable symmetric static bifurcation, or sub-critical and unstable, in analogy with an unstable symmetric static bifurcation. Galloping of a bluff body in a steady flow can be of the unstable type, and we might expect some form of imperfection sensitivity, although in contrast to static bifurcations, a Hopf bifurcation is actually topologically stable under the operation of a single control parameter: the form of the Hopf bifurcation cannot be rounded off or destroyed by imperfections as in the static case. However, since the dynamic instabilities are associated with a well defined and non-zero circular frequency we might expect the failure ‘load’ to be sensitive to resonant periodic forcing, and this is here shown to be the case, with a two-thirds power law sensitivity analogous to the static cusp.The conclusion is drawn that the concept of structural stability, vital as it is to good mathematical modelling, must be examined with care, particular attention being given to any restrictions on the class of allowable perturbations.  相似文献   

11.
In this paper, we consider a regulated logistic growth model. We first consider the linear stability and the existence of a Hopf bifurcation. We show that Hopf bifurcations occur as the delay τ passes through critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit algorithm determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, numerical simulation results are given to support the theoretical predictions.  相似文献   

12.
In this paper, we consider a model described the survival of red blood cells in animal. Its dynamics are studied in terms of local and global Hopf bifurcations. We show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay crosses some critical values. Using the reduced system on the center manifold, we also obtain that the periodic orbits bifurcating from the positive equilibrium are stable in the center manifold, and all Hopf bifurcations are supercritical. Further, particular attention is focused on the continuation of local Hopf bifurcation. We show that global Hopf bifurcations exist after the second critical value of time delay.  相似文献   

13.
In this paper, we apply a non-standard finite difference scheme to a time-delayed model of speculative asset markets and discuss the effect of time delay on the dynamics of asset prices. Firstly, the stability of the positive equilibrium of the system is investigated by analysing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Hopf bifurcations occur when the delay passes a sequence of critical values. Then, the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived. Finally, some numerical simulations are given to verify the theoretical analysis.  相似文献   

14.
In this paper, a hybrid ratio-dependent three species food chain model with time delay is studied by using the theory of functional differential equation and Hopf bifurcation, the condition on which positive equilibrium exists and the quality of Hopf bifurcation are given. Chaotic solutions are observed and are controlled by delay parameter. Finally, we indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable state or a stable periodic orbit.  相似文献   

15.
A differential delay equation model with a discrete time delay and a distributed time delay is introduced to simulate zooplankton–nutrient interaction. The differential inequalities’ methods and standard Hopf bifurcation analysis are applied. Some sufficient conditions are obtained for persistence and for the global stability of the unique positive steady state, respectively. It was shown that there is a Hopf bifurcation in the model by using the discrete time delay as a bifurcation parameter.  相似文献   

16.
A delayed three-component reaction–diffusion population model with Dirichlet boundary condition is investigated. The existence and stability of the positive spatially nonhomogeneous steady state solution are obtained via the implicit function theorem. Moreover, taking delay ττ as the bifurcation parameter, Hopf bifurcation near the steady state solution is proved to occur at the critical value τ0τ0. The direction of Hopf bifurcation is forward. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the stability of bifurcating periodic solutions occurring through Hopf bifurcations is investigated. It is demonstrated that the bifurcating periodic solution occurring at τ0τ0 is orbitally asymptotically stable. Finally, the general results are applied to four types of three species population models. Numerical simulations are presented to illustrate our theoretical results.  相似文献   

17.
研究了一个疾病在食饵中传播的捕食与被捕食模型.在未引入时滞时,利用Routh-Hurwitz定理证明了正平衡点的局部渐近稳定性.在引入时滞后,主要讨论了正平衡点的稳定性,得到了当经过一系列临界条件时发生Hopf分支.  相似文献   

18.
In this paper, an eco-epidemiological model with a stage structure is considered. The asymptotical stability of the five equilibria, the existence of stability switches about positive equilibrium, is investigated. It is found that Hopf bifurcation occurs when the delay τ passes though a critical value. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.  相似文献   

19.
The reaction–diffusion Gierer–Meinhardt system with a saturation in the activator production is considered. Stability of the unique positive constant steady state solution is analysed, and associated Hopf bifurcations and steady state bifurcations are obtained. A global bifurcation diagram of non-trivial periodic orbits and steady state solutions with respect to key system parameters is obtained, which improves the understanding of dynamics of Gierer–Meinhardt system with a saturation in different parameter regimes.  相似文献   

20.
In this paper, the dynamics of a spruce-budworm model with delay is investigated. We show that there exists Hopf bifurcation at the positive equilibrium as the delay increases. Some sufficient conditions for the existence of Hopf bifurcation are obtained by investigating the associated characteristic equation. By using the theory of normal form and center manifold, explicit expression for determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号