首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用同步辐射高分辨光电子能谱研究了金团簇在部分还原TiO2-(1×1)表面的生长和稳定性.价带谱实验结果观察到非常少量金团簇的沉积导致了Ti^3+的3d峰完全消失,表明金团簇成核在TiO2-(1×1)表面的氧缺陷位.Au4f芯电子光电子能谱实验结果证明了TiO2-(1×1)表面氧缺陷位向金团簇转移电荷.还对比研究了化学剂量比和部分还原的TiO2-(1×1)表面上金团簇的热稳定性.当金团簇尺寸相近时部分还原的TiO2-(1×1)表面上金团簇要比化学剂量比的TiO2-(1×1)面上金团簇稳定;在相同的表面上尺寸大的金团簇要比尺寸小的金团簇稳定.  相似文献   

2.
In situ thermal annealing was used for the first time to observe directly that Au nanoparticles, which were originally fully embedded in the near-surface region of TiO(2), can be tailored into hemispheres exposed at the surface at elevated temperature. Precise control of the size of the Au hemispheres was achieved by subsequent low-energy ion sputtering. This method can be used to control the structure and size of a wide variety of nanoparticles in a matrix where surface structure and particle size are required to obtain specific material properties.  相似文献   

3.
Photodeposition of Ag nanoparticles on commercial TiO2 particles and nanoparticles was performed in order to provide direct visualization of the spatial distribution of photoactive sites on sub-micrometer-scale and nanoscale TiO2 particle surfaces and to create materials for potential catalytic applications. HRTEM (high-resolution transmission electron microscopy) and HAADF-STEM (high-angle annular dark-field scanning transmission electron microscopy) were used to characterize these materials. The size and spatial distributions of the Ag nanoparticles on the commercial TiO2 were not uniform; the concentration of Ag was higher on grain boundaries and at the edges of these submicrometer particles. In the case of TiO2 nanoparticles, the size distribution of the Ag nanoparticles deposited was relatively uniform and independent of irradiation time and photon energy. The amount of Ag deposited on TiO2 nanoparticles was at least 6 times higher than that on the commercial samples for comparable irradiation conditions. Compared to the case of Ag photodeposition, the difference in the amount of Au photodeposited on TiO2 particles and nanoparticles was even greater, especially at low precursor concentrations. Photodeposition on TiO2 nanoparticles is suggested as a potential method for the preparation of Au/TiO2 catalysts, as loadings in excess of 10 wt % of uniform 1 nm metal particles were achieved in this work.  相似文献   

4.
The growth of titanium oxide nanoparticles on reconstructed Au(111) was investigated by scanning tunneling microscopy and x-ray photoelectron spectroscopy. Ti was deposited by physical-vapor deposition at 300 K. Regular arrays of titanium nanoparticles form by preferential nucleation of Ti at the elbow sites of the herringbone reconstruction. The titanium oxide nanoclusters were synthesized by subsequent exposure to O(2) at 300 K. Two-and three-dimensional titanium oxide nanocrystallites form during annealing in the temperature range from 600 to 900 K. At the same time, the Au(111) surface assumes a serrated 110-oriented step-edge morphology suggesting step-edge pinning by titanium oxide nanoparticles. The oxidation state of the titanium oxide nanoparticles varies with annealing temperature. Specifically, annealing to 900 K results in the formation of stoichiometric TiO(2) nanocrystals as judged by the Ti(2p) binding energies measured in the x-ray photoelectron data. The nanodispersed TiO(2) on Au(111) is an ideal system to test the various models proposed for the enhanced catalytic reactivity of supported Au nanoparticles.  相似文献   

5.
Highly dispersed gold particles (<2 nm) were synthesized within the pores of mesoporous silica with pore sizes ranging from 2.2 to 6.5 nm and different pore structures (2D-hexagonal, 3D-hexagonal, and cubic). The catalysts were reduced in flowing H2 at 200 degrees C and then used for CO oxidation at temperatures ranging from 25 to 400 degrees C. The objective of this study was to investigate the role of pore size and structure in controlling the thermal sintering of Au nanoparticles. Our study shows that sintering of Au particles is dependent on pore size, pore wall thickness (strength of pores), and pore connectivity. A combination of high-resolution TEM/STEM and SEM was used to measure the particle size distribution and to determine whether the Au particles were located within the pores or had migrated to the external silica surface.  相似文献   

6.
钮洋  刘清海  杨娟  高东亮  秦校军  罗达  张振宇  李彦 《化学学报》2012,70(14):1533-1537
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料.  相似文献   

7.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

8.
Gold nanoparticles supported on P25 titania (Au/TiO(2)) exhibit photocatalytic activity for UV and visible light (532 nm laser or polychromatic light λ > 400 nm) water splitting. The efficiency and operating mechanism are different depending on whether excitation occurs on the titania semiconductor (gold acting as electron buffer and site for gas generation) or on the surface plasmon band of gold (photoinjection of electrons from gold onto the titania conduction band and less oxidizing electron hole potential of about -1.14 V). For the novel visible light photoactivity of Au/TiO(2), it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material (Φ(H2) = 7.5% and Φ(O2) = 5.0% at 560 nm) being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size and calcined at 200 °C.  相似文献   

9.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

10.
11.
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.  相似文献   

12.
Density functional theory calculations are performed for the adsorption of O2, coadsorption of CO, and the CO+O2 reaction at the interfacial perimeter of nanoparticles supported by rutile TiO2(110). Both stoichiometric and reduced TiO2 surfaces are considered, with various relative arrangements of the supported Au particles with respect to the substrate vacancies. Rather stable binding configurations are found for the O2 adsorbed either at the trough Ti atoms or leaning against the Au particles. The presence of a supported Au particle strongly stabilizes the adsorption of O2. A sizable electronic charge transfer from the Au to the O2 is found together with a concomitant electronic polarization of the support meaning that the substrate is mediating the charge transfer. The O2 attains two different charge states, with either one or two surplus electrons depending on the precise O2 adsorption site at or in front of the Au particle. From the least charged state, the O2 can react with CO adsorbed at the edge sites of the Au particles leading to the formation of CO2 with very low (approximately 0.15 eV) energy barriers.  相似文献   

13.
The Cu/TiO(2)(110) surface displays a great catalytic activity toward the water-gas shift reaction (WGSR), for which Cu is considered to be the most active metal on a TiO(2)(110)-supported surface. Experiments revealed that Cu nanoparticles bind preferentially to the terrace and steps of the TiO(2)(110) surface, which would not only affect the growth mode of the surface cluster but also enhance the catalytic activity, unlike Au nanoparticles for which occupancy of surface vacancies is favored, resulting in poorer catalytic performance than Cu. With density-functional theory we calculated some possible potential-energy surfaces for the carboxyl and redox mechanisms of the WGSR at the interface between the Cu cluster and the TiO(2) support. Our results show that the redox mechanism would be the dominant path; the resident Cu clusters greatly diminish the barrier for CO oxidation (22.49 and 108.68 kJ mol(-1), with and without Cu clusters, respectively). When adsorbed CO is catalytically oxidized by the bridging oxygen of the Cu/TiO(2)(110) surface to form CO(2), the release of CO(2) from the surface would result in the formation of an oxygen vacancy on the surface to facilitate the ensuing water splitting (barrier 34.90 vs. 50.49 kJ mol(-1), with and without the aid of a surface vacancy).  相似文献   

14.
We report simple hydrothermal routes to prepare thermally stable SnO2 particles having high specific surface areas and mesoporosity. The preparation method includes a new combination of synthetic processes: hydrolysis of tin(IV) chloride at 95 degrees C in the absence of alkaline solutions (aqueous NH3 or NaOH), formation of nanocrystalline SnO2, and subsequent hydrothermal treatments at temperatures between 100 and 200 degrees C. After annealing treatments of the hydrothermally treated SnO2 particles at 400 or 500 degrees C, their crystallite sizes remained smaller than 7.7 nm and their specific surface areas were still higher than 110 m2/g, indicative of the high thermal stability against particle growth and sintering. Furthermore, mesoporosity evolved with a relatively narrow pore size distribution typically in the range of 3.0-4.3 nm. The effects of the hydrothermal treatment were explained by uniformization of the particle size that was beneficial to the suppression of particle growth.  相似文献   

15.
CO oxidation and decomposition behaviors over nanosized 3% Au/alpha-Fe2O3 catalyst and over the alpha-Fe2O3 support were studied in situ via thermogravimetry coupled to on-line FTIR spectroscopy (TG-FTIR), which was used to obtain temperature-programmed reduction (TPR) curves and evolved gas analysis. The catalyst was prepared by a sonication-assisted Au colloid based method and had a Au particle size in the range of 2-5 nm. Carburization studies of H 2-prereduced samples were also made in CO gas. According to gravimetry, for the 3% Au/alpha-Fe2O3 catalyst, there were three distinct stages of CO interaction with the Au catalyst but only two stages for the catalyst support. At low temperatures (相似文献   

16.
Au atoms have been deposited on oxidized and reduced TiO2 thin films grown on Mo(110). The gold binding sites and the occurrence of Au-TiO2 charge transfer were identified by measuring infrared spectra as a function of temperature and substrate preparation. The results have been interpreted by slab model DFT calculations. Au binds weakly to regular TiO2 sites (De < 0.5 eV) where it remains neutral, and diffuses easily even at low temperature until it gets trapped at strong binding sites such as oxygen vacancies (De = 1.7 eV). Here, a charge transfer from TiO2 to Au occurs. Au(delta-)CO complexes formed on oxygen vacancies easily lose CO (De = 0.4 eV), and the CO stretching frequency is red-shifted. On nondefective surfaces, CO adsorption induces a charge transfer from Au to TiO2 with formation of strongly bound Audelta+CO complexes (De = 2.4 eV); the corresponding CO frequency is blue-shifted with respect to free CO. We propose possible mechanisms to reconcile the observed CO desorption around 380 K with the unusually high stability of Au-CO complexes formed on regular sites predicted by the calculations. This implies: (a) diffusion of AuCO complexes above 150 K; (b) formation of gold dimers when the diffusing AuCO complex encounters a Au atom bound to an oxygen vacancy (reduced TiO2) or a second AuCO unit (oxidized TiO2); and (c) CO desorption from the resulting dimer, occurring around 350-400 K.  相似文献   

17.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

18.
Colloidal gold (Au) nanoparticles were prepared and successfully loaded on titanium(IV) oxide (TiO(2)) without change in the original particle size using a method of colloid photodeposition operated in the presence of a hole scavenger (CPH). The prepared Au nanoparticles supported on TiO(2) showed strong photoabsorption at around 550 nm due to surface plasmon resonance (SPR) of Au and exhibited a photocatalytic activity in mineralization of formic acid in aqueous suspensions under irradiation of visible light (>ca. 520 nm). A linear correlation between photocatalytic activity and the amount of Au loaded, that is, the number of Au nanoparticles, was observed, indicating that the activity of Au/TiO(2) plasmonic photocatalysts can be controlled simply by the amount of Au loading using the CPH method and that the external surface area of Au nanoparticles is a decisive factor in mineralization of formic acid under visible light irradiation. Very high reaction rates were obtained in samples with 5 wt % Au or more, although the rate tended to be saturated. The CPH method can be widely applied for loading of Au nanoparticles on various TiO(2) supports without change in the original size independent of the TiO(2) phase. The rate of CO(2) formation also increased linearly with increase in the external surface area of Au. Interestingly, the TiO(2) supports showed different slopes of the plots. The slope is important for selection of TiO(2) as a material supporting colloidal Au nanoparticles.  相似文献   

19.
Bulk gold has long been regarded as a noble metal, having very low chemical and catalytic activity. However, metal oxide-supported gold particles, particularly those that are less than 5 nm in diameter, have been found to have remarkable catalytic properties. In this study we show that impinging gas-phase CO molecules react readily with oxygen adatoms preadsorbed on Au/TiO(2)(110) to produce CO(2) even under conditions in which the sample is cryogenically cooled. Gold particle size seems to have little effect on the CO oxidation reaction when oxygen adatoms are preadsorbed. We also show that as the oxygen adatom coverage increases, the rate of CO oxidation decreases on Au/TiO(2) at cryogenic temperatures.  相似文献   

20.
Au particles (mean size ca. 3 nm) supported on TiO(2) particles were irradiated by UV light (>300 nm) in aqueous solutions at 278 K. Photo-induced dissolution of Au nanoparticles followed by redeposition occurred in aqueous solutions containing halogen ions. The dissolution of Au nanoparticles yielded a Au(III) complex with a halogen ion; subsequent reduction of the Au(III) complex caused precipitation of larger Au particles on TiO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号