首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The properties of magnetic metamaterials composed of microresonators have been studied. Coupling of meta-atoms induces magnetoinductive waves, which determine the features of propagation of electromagnetic radiation in metamaterials. The complication of the coupling mechanism due to the radiation when the element sizes decrease as frequencies tend to optical ones is discussed.  相似文献   

2.
Using only two gold strips, we propose a scheme for generation of the plasmonic analogue of electromagnetically-induced transparency (EIT) in stacked optical metamaterials by utilizing the second-order plasmon resonance. In addition, we show that the plasmonic EIT can be achieved with asymmetric structure, since the asymmetric structure allows the excitation of the dark mode.  相似文献   

3.
Recently reported plasmon-induced transparency(PIT)in metamaterials endows the optical structures in classical systems with quantum optical effects.In particular,the nonreconfigurable nature in metamaterials makes multifunctional applications of PIT effects in terahertz communications and optical networks remain a great challenge.Here,we present an ultrafast process-selectable modulation of the PIT effect.By incorporating silicon islands into diatomic metamaterials,the PIT effect is modulated reversely,depending on the vertical and horizontal configurations,with giant modulation depths as high as 129%and 109%.Accompanied by the enormous switching of the transparent window,remarkable slow light effect occurs.  相似文献   

4.
李家华  杨文星  彭菊村 《中国物理》2004,13(10):1694-1699
A nonlinear optical cascade-configuration multi-wave mixing (CCMWM) scheme is presented and analysed for the generation of coherent light in a six-level atomic system in the context of electromagnetically induced transparency (EIT). A detailed semi-classical study of the propagation of the generated mixing and probe fields is demonstrated. We show by numerical simulations that EIT is capable of suppressing linear and nonlinear photon absorption. The analytical dependence of the generated mixing field on the probe field and the respective detuning is also predicted. Such a nonlinear optical process can be used for generating coherent short-wavelength radiation.  相似文献   

5.
肖敏  王海 《物理》2007,36(9):667-672
电磁感应透明(electromagnetically induced transparency,EIT)发生时所伴随的效应(如可控的线性吸收和色散,可控的非线性增强)是理想光学介质所必需的重要特性。通过理解这种相干制备的多能级原子系统的线性和非线性特征,人们能够更好地设计和利用这种新颖的光学介质,并将其应用到光通信和量子信息处理中。文章简单介绍了与EIT有关的原子介质的基本(线性和非线性)光学特性,并简单评价了几个令人感兴趣的应用。  相似文献   

6.
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm^2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.  相似文献   

7.
孙建强  骆思宇  蔡白光 《物理学报》2012,61(14):140203-140203
冷原子介质中的光孤子在电磁感应透明(EIT)的作用下表现出很多奇异的特性,对描述这些特性的理论模型的研究在光信号处理和传输方面具有重要的意义. 描述三能级冷原子EIT介质中空间孤立子演化的二维饱和非线性薛定谔方程被转化成辛结构的Hamilton系统, 利用辛几何算法离散Hamilton系统得到了相应离散的辛格式,并且利用辛格式数值模拟了三能级冷原子EIT介质中在相同振辐不同相位的两个、四个光孤子的相互作用行为. 数值实验结果表明: 冷原子介质中多个光孤子的相互作用行为不但与入射高斯光束的相位有关,还和入射高斯光束的方向有关. 入射的高斯光束能在冷原子介质中形成稳定的孤立子.  相似文献   

8.
9.
张振清  路海  王少华  魏泽勇  江海涛  李云辉 《物理学报》2015,64(11):114202-114202
本文对具有类EIR色散特性的平面金属等离激元美特材料(planar plasmonic metamaterials, PPM)对光学Tamm态及相关激射行为的增强作用进行了研究. 我们首先运用传输矩阵方法分析了利用PPM结构的色散来增强光学Tamm态对应模式电磁局域密度的可能性. 其次, 我们将具有类EIR特性的PPM与一维光子晶体(photonic crystal, PC)合在一起设计了一种平面等离激元美特材料-光子晶体(PPM-PC)异质结构. 研究发现, 通过在电磁局域密度最高的PPM结构中(或附近)加入增益介质, 可观察到比通常光学Tamm态更强的激射增强效应及更明显的单色性响应. 这些特性使得这种PPM-PC结构有望被应用于低阈值激光器、荧光增强等方面.  相似文献   

10.
In this paper, based on the constructive interference of plasmonic dipolar and quadrupolar modes, a classical analogue of electromagnetically induced absorption (EIA) is demonstrated theoretically in a stacked metamaterial consisting of a short metal strip (which acts as a bright resonator) and a long metal strip (acting as a dark resonator), which has been reported to support the electromagnetically induced transparency (EIT) effect. The transition from EIA to EIT can be clearly observed in the absorbance spectra via varying the vertical spacing between two resonant oscillators. With the help of the coupled two-oscillator model, the phase shift between the bright and dark resonance modes is calculated by fitting the simulated absorbance spectra, which reveals the physical mechanisms behind constructive and destructive interference effects in EIT/EIA metamaterials.  相似文献   

11.
In this work, the long wavelength optical properties of a plasmonic crystal, composed of gold nanorod dimers arranged parallel, have been studied. Due to the strong coupling between incident light and the oscillation of free electrons inside nanorod dimers, the magnetically induced and/or magnetoelectrically coupled plasmonic polaritons can be excited. A theoretical demonstration has been proposed and coupled equations that show similar profiles to the Huang-Kun equations for ionic crystals have been deduced, indicating the constitutive abnormalities and polaritonic bandgap effect. The analogy between the magnetoelectrically coupled metamaterials and ionic crystals may shed light on physical explanations, as well as constitutive parameter retrieval, for the magnetoelectric metamaterials.  相似文献   

12.
13.
Recent years have seen a new wave of interest in layered media – namely, plasmonic multilayers – in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal–dielectric multilayered metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials A number of fundamental electromagnetic effects unique to the latter are identified and demonstrated. Examples include the evolution of isofrequency contour shape from elliptical to hyperbolic, all-angle negative refraction, and nonlocality-induced optical birefringence. Analysis of the underlying physical causes, which are spatial dispersion and optical nonlocality, is also reviewed. These recent results are extremely promising for a number of applications ranging from nanolithography to optical cloaking.  相似文献   

14.
The dispersion of magnetic inductive waves in biatomic metamaterials in the MHz range is studied experimentally for the first time. The biatomic material properties is the result of interaction between meta-atoms. It is shown how to obtain structures in which dispersion is split into two branches separated by a stop band in which the propagation of magnetic inductive wave is impossible.  相似文献   

15.
The interaction of a quantized electromagnetic field in a squeezed coherent state with a three-level Λ-atom is studied numerically by the quantum Monte Carlo method and analytically by the Heisenberg-Langevin method in the regime of electromagnetically induced transparency (EIT). The possibility of noise suppression in the atomic system through the quantum properties of squeezed light is considered in detail; the characteristics of the atomic system responsible for the relaxation processes and noise in the EIT band have been found. Further applications of the Monte Carlo method and the developed numerical code to the study of more complex systems are discussed.  相似文献   

16.
Chao Hang 《Physics letters. A》2008,372(17):3129-3135
We investigate possible formation and propagation of localized, shape-preserving nonlinear optical pulse in a resonant, lifetime-broadened four-level tripod atomic system via electromagnetically induced transparency (EIT). We prove both analytically and numerically that although in anomalous dispersion regimes near resonance a superluminal optical soliton may appear, such soliton suffers serious absorption. However, by choosing appropriate parameters to make the system work in normal dispersion regimes and within an EIT transparency window, ultraslow optical solitons with very low light intensity can form and propagate stably in the system.  相似文献   

17.
马平平  张杰  刘焕焕  张静  徐永刚  王江  张梦桥  李永放 《物理学报》2016,65(21):217801-217801
基于金纳米棒构成的三聚体微元结构模型,详细地研究了等离激元诱导透明(plasmon induced transparency,PIT)现象产生的物理过程.研究发现,三聚体的吸收谱线随着其耦合距离以及尺寸的变化,竖直金纳米棒所对应的偶极明模在平行双长条金纳米棒对应的暗模作用下会产生分裂.依据这一结果提出了一个新的物理解释,PIT现象的产生主要来自于竖直金纳米棒中偶极振荡的模式分裂后的相干叠加.同时,考虑到两个振子之间的耦合会伴随着一定的相位关联性,进而引入了耦合相位因子修正了洛伦兹振子耦合模型,解析地研究了耦合相位因子对吸收谱的调控作用和分裂明模之间的相干叠加效应对PIT效应的影响.这为在纳米尺寸范围设计人造原子、光开关、慢光效应等方面的应用提供了理论参考.  相似文献   

18.
Lu H  Liu X  Mao D  Gong Y  Wang G 《Optics letters》2011,36(16):3233-3235
An optical effect analogous to electromagnetically induced transparency (EIT) is observed in nanoscale plasmonic resonator systems. The system consists of a slot cavity as well as plasmonic bus and resonant waveguides, where the phase-matching condition of the resonant waveguide is tunable for the generation of an obvious EIT-like coupled resonator-induced transparency effect. A dynamic theory is utilized to exactly analyze the influence of physical parameters on transmission characteristics. The transparency effect induced by coupled resonance may have potential applications for nanoscale optical switching, nanolaser, and slow-light devices in highly integrated optical circuits.  相似文献   

19.
Wu Y  Wen L  Zhu Y 《Optics letters》2003,28(8):631-633
We propose and analyze a hyper-Raman scheme for generation of coherent light in a five-level atomic system based on electromagnetically induced transparency (EIT). We show that EIT suppresses linear and nonlinear photon absorption and enables the hyper-Raman process to proceed through real, near-resonant intermediate states. The scheme greatly enhances hyper-Raman efficiency and may be used for generating short-wavelength radiation at low pump intensities.  相似文献   

20.
Using Schrödinger-Maxwell formalism, we propose and analyze an optical four-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomic medium based on dual electromagnetically induced transparency (EIT). We show that the significantly enhanced conversion efficiency enabled by ultraslow propagation of pump waves has no direct relationship with the single-photon detuning, which is different from the FWM with a single EIT. The most important feature is that our scheme is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference that looks like a recent scheme [Phys. Rev. Lett. 91 (2003) 243902] and may be used for generating short-wave-length coherent radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号