首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The 129Xe nuclear magnetic resonance spectrum of xenon in gas mixtures of Xe with other molecules provides a test of the ab initio surfaces for the intermolecular shielding of Xe in the presence of the other molecule. We examine the electron correlation contributions to the Xe-CO2, Xe-N2, Xe-CO, Xe-CH4, and Xe-CF4 shielding surfaces and test the calculations against the experimental temperature dependence of the density coefficients of the Xe chemical shift in the gas mixtures at infinite dilution in Xe. Comparisons with the gas phase data permit the refinement of site-site potential functions for Xe-N2, Xe-CO, and Xe-CF4 especially for atom-Xe distances in the range 3.5-6 A. With the atom-atom shielding surfaces and potential parameters obtained in the present work, construction of shielding surfaces and potentials for applications such as molecular dynamics averaging of Xe chemical shifts in liquid solvents containing CH3, CH2, CF3, and CF2 groups is possible.  相似文献   

2.
Among rare gases, xenon features an unusually broad nuclear magnetic resonance (NMR) chemical shift range in its compounds and as a non-bonded Xe atom introduced into different environments. In this work we show that (129)Xe NMR chemical shifts in the recently prepared, matrix-isolated xenon compounds appear in new, so far unexplored (129)Xe chemical shift ranges. State-of-the-art theoretical predictions of NMR chemical shifts in compounds of general formula HXeY (Y = H, F, Cl, Br, I, -CN, -NC, -CCH, -CCCCH, -CCCN, -CCXeH, -OXeH, -OH, -SH) as well as in the recently prepared ClXeCN and ClXeNC species are reported. The bonding situation of Xe in the studied compounds is rather different from the previously characterized cases as Xe appears in the electronic state corresponding to a situation with a low formal oxidation state, between I and II in these compounds. Accordingly, the predicted (129)Xe chemical shifts occur in new NMR ranges for this nucleus: ca. 500-1000 ppm (wrt Xe gas) for HXeY species and ca. 1100-1600 ppm for ClXeCN and ClXeNC. These new ranges fall between those corresponding to the weakly-bonded Xe(0) atom in guest-host systems (δ < 300 ppm) and in the hitherto characterized Xe molecules (δ > 2000 ppm). The importance of relativistic effects is discussed. Relativistic effects only slightly modulate the (129)Xe chemical shift that is obtained already at the nonrelativistic CCSD(T) level. In contrast, spin-orbit-induced shielding effects on the (1)H chemical shifts of the H1 atom directly bonded to the Xe center largely overwhelm the nonrelativistic deshielding effects. This leads to an overall negative (1)H chemical shift in the range between -5 and -25 ppm (wrt CH(4)). Thus, the relativistic effects induced by the heavy Xe atom appear considerably more important for the chemical shift of the neighbouring, light hydrogen atom than that of the Xe nucleus itself. The predicted NMR parameters facilitate an unambiguous experimental identification of these novel compounds.  相似文献   

3.
We report, for the first time, a prediction of the line shapes that would be observed in the (129)Xe nuclear magnetic resonance (NMR) spectrum of xenon in the cages of clathrate hydrates. We use the dimer tensor model to represent pairwise contributions to the intermolecular magnetic shielding tensor for Xe at a specific location in a clathrate cage. The individual tensor components from quantum mechanical calculations in clathrate hydrate structure I are represented by contributions from parallel and perpendicular tensor components of Xe-O and Xe-H dimers. Subsequently these dimer tensor components are used to reconstruct the full magnetic shielding tensor for Xe at an arbitrary location in a clathrate cage. The reconstructed tensors are employed in canonical Monte Carlo simulations to find the Xe shielding tensor component along a particular magnetic field direction. The shielding tensor component weighted according to the probability of finding a crystal fragment oriented along this direction in a polycrystalline sample leads to a predicted line shape. Using the same set of Xe-O and Xe-H shielding functions and the same Xe-O and Xe-H potential functions we calculate the Xe NMR spectra of Xe atom in 12 distinct cage types in clathrate hydrates structures I, II, H, and bromine hydrate. Agreement with experimental spectra in terms of the number of unique tensor components and their relative magnitudes is excellent. Agreement with absolute magnitudes of chemical shifts relative to free Xe atom is very good. We predict the Xe line shapes in two cages in which Xe has not yet been observed.  相似文献   

4.
Using the molecular dynamics (MD) method, we demonstrate that intermolecular nuclear magnetic resonance (NMR) chemical shifts can be used to evaluate and develop intermolecular potentials for cross-interactions for use in solubility studies. The calculation of chemical shifts in MD is an order of magnitude more efficient than solubilities, which makes it an attractive tool for fine-tuning potential models. We examine the average Xe chemical shifts in cyclo-alkanes over a range of temperatures to develop a suitable potential model for the cross-interactions between Xe and a series of cyclo-alkanes. Our results clearly demonstrate that potential models that show better agreement with experiments for chemical shift, invariably lead to better agreement with experiment for Henry's constant and solubility of gases in solvents.  相似文献   

5.
We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the (17)O and (1)H isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4 ppm for the (17)O shielding and 1 ppm for the (1)H shielding.  相似文献   

6.
Proton NMR shielding constants and chemical shifts for hydrogen guests in small and large cages of structure II clathrates are calculated using density-functional theory and the gauge-invariant atomic-orbital method. Shielding constants are calculated at the B3LYP level with the 6-311++G(d,p) basis set. The calculated chemical shifts are corrected with a linear regression to reproduce the experimental chemical shifts of a set of standard molecules. The calculated chemical shifts of single hydrogen molecules in the small and large structure II cages are 4.94 and 4.84 ppm, respectively, which show that within the error range of the method the H2 guest molecules in the small and large cages cannot be distinguished. Chemical shifts are also calculated for double occupancy of the hydrogen guests in small cages, and double, triple, and quadruple occupancy in large cages. Multiple occupancy changes the chemical shift of the hydrogen guests by approximately 0.2 ppm. The relative effects of other guest molecules and the cage on the chemical shift are studied for the cages with multiple occupancies.  相似文献   

7.
We have applied computational protocols based on DFT and molecular dynamics simulations to the prediction of the alkyl 1H and 13C chemical shifts of alpha-d-glucose in water. Computed data have been compared with accurate experimental chemical shifts obtained in our laboratory. 13C chemical shifts do not show a marked solvent effect. In contrast, the results for 1H chemical shifts provided by structures optimized in the gas phase are only fair and point out that it is necessary to take into account both the flexibility of the glucose structure and the strong effect exerted by solvent water thereupon. Thus, molecular dynamics simulations were carried out to model both the internal geometry as well as the influence of solvent molecules on the conformational distribution of the solute. Snapshots from the simulation were used as input to DFT NMR calculations with varying degrees of sophistication. The most important factor that affects the accuracy of computed 1H chemical shifts is the solute geometry; the effect of the solvent on the shielding constants can be reasonably accounted for by self-consistent reaction field models without the need of explicitly including solvent molecules in the NMR property calculation.  相似文献   

8.
The gas-to-aqueous solution shifts of the 17O and 13C NMR isotropic shielding constants for the carbonyl chromophore in formaldehyde and acetone are investigated. For the condensed-phase problem, we use the hybrid density functional theory/molecular mechanics approach in combination with a statistical averaging over an appropriate number of solute-solvent configurations extracted from classical molecular dynamics simulations. The PBE0 exchange-correlation functional and the 6-311++G(2d,2p) basis set are used for the calculation of the shielding constants. London atomic orbitals are employed to ensure gauge-origin independent results. The effects of the bulk solvent molecules are found to be crucial in order to calculate accurate solvation shifts of the shielding constants. Very good agreement between the computed and experimental solvation shifts is obtained for the shielding constants of acetone when a polarizable water potential is used. Supermolecular results based on geometry-optimized molecular structures are presented. We also compare the results obtained with the polarizable continuum model to the results obtained using explicit MM molecules to model the bulk solvent effect.  相似文献   

9.
10.
It is now generally recognized that overlap-exchange interactions are the primary cause of the medium-dependent magnetic shielding (chemical shift) in all noble gases except helium, although the attractive electrostatic-dispersion (van der Waals) interactions play an indirect role in determining the penetration of the interacting species into the repulsive overlap-exchange region. The short-range nature of these overlap-exchange interactions, combined with the fact that they often can be approximated by simple functions of the overlap of the wave functions of the interacting species, suggests a useful semiempirical model of these chemical shifts. In it the total shielding is the sum of shieldings due to pairwise interactions of the noble gas atom with the individual atoms of the medium, with the "atomic" shielding terms either estimated by simple functions of the atomic overlap integrals averaged over their Boltzmann-weighted separations, or determined by fits to experimental data in systems whose complexity makes the former procedure impractical. Results for (129)Xe chemical shifts in the noble gases and in a variety of molecular and condensed systems, including families of n-alkanes, straight-chain alcohols, and the endohedral compounds Xe@C(60) and Xe@C(70) are encouraging for the applicability of the model to systems of technical and biomedical interest.  相似文献   

11.
We calibrate the methodology for the calculation of nuclear magnetic resonance (NMR) properties in novel organo-xenon compounds. The available state-of-the-art quantum-chemical approaches are combined and applied to the HXeCCH molecule as the model system. The studied properties are (129)Xe, (1)H, and (13)C chemical shifts and shielding anisotropies, as well as (131)Xe and (2)H nuclear quadrupole coupling constants. The aim is to obtain, as accurately as currently possible, converged results with respect to the basis set, electron correlation, and relativistic effects, including the coupling of relativity and correlation. This is done, on one hand, by nonrelativistic correlated ab initio calculations up to the CCSD(T) level and, on the other hand, for chemical shifts and shielding anisotropies by the leading-order relativistic Breit-Pauli perturbation theory (BPPT) with correlated ab initio and density-functional theory (DFT) reference states. BPPT at the uncorrelated Hartree-Fock level as well as the corresponding fully relativistic Dirac-Hartree-Fock method are found to be inapplicable due to a dramatic overestimation of relativistic effects, implying the influence of triplet instability in this multiply bonded system. In contrast, the fully relativistic second-order Moller-Plesset perturbation theory method can be applied for the quadrupole coupling, which is a ground-state electric property. The performance of DFT with various exchange-correlation functionals is found to be inadequate for the nonrelativistic shifts and shielding anisotropies as compared to the CCSD(T) results. The relativistic BPPT corrections to these quantities can, however, be reasonably predicted by DFT, due to the improved triplet excitation spectrum as compared to the Hartree-Fock method, as well as error cancellation within the five main BPPT contributions. We establish three computationally feasible models with characteristic error margins for future calculations of larger organo-xenon compounds to guide forthcoming experimental NMR efforts. The predicted (129)Xe chemical shift in HXeCCH is in a novel range for this nucleus, between weakly bonded or solvated atomic xenon and xenon in the hitherto characterized molecules.  相似文献   

12.
The 129Xe NMR line shapes of xenon adsorbed in the nanochannels of the (+/-)-[Co(en)3]Cl3 ionic crystal have been calculated by grand canonical Monte Carlo (GCMC) simulations. The results of our GCMC simulations illustrate their utility in predicting 129Xe NMR chemical shifts in systems containing a transition metal. In particular, the nanochannels of (+/-)-[Co(en)3]Cl3 provide a simple, yet interesting, model system that serves as a building block toward understanding xenon chemical shifts in more complex porous materials containing transition metals. Using only the Xe-C and Xe-H potentials and shielding response functions derived from the Xe@CH4 van der Waals complex to model the interior of the channel, the GCMC simulations correctly predict the 129Xe NMR line shapes observed experimentally (Ueda, T.; Eguchi, T.; Nakamura, N.; Wasylishen, R. E. J. Phys. Chem. B 2003, 107, 180-185). At low xenon loading, the simulated 129Xe NMR line shape is axially symmetric with chemical-shift tensor components delta(parallel) = 379 ppm and delta(perpendicular) = 274 ppm. Although the simulated isotropic chemical shift, delta(iso) = 309 ppm, is overestimated, the anisotropy of the chemical-shift tensor is correctly predicted. The simulations provide an explanation for the observed trend in the 129Xe NMR line shapes as a function of the overhead xenon pressure: delta(perpendicular) increased from 274 to 292 ppm, while delta(parallel) changed by only 3 ppm over the entire xenon loading range. The overestimation of the isotropic chemical shifts is explained based upon the results of quantum mechanical 129Xe shielding calculations of xenon interacting with an isolated (+/-)-[Co(en)3]Cl3 molecule. The xenon chemical shift is shown to be reduced by about 12% going from the Xe@[Co(en)3]Cl3 van der Waals complex to the Xe@C2H6 fragment.  相似文献   

13.
The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.  相似文献   

14.
We investigate the impact of water on the optical absorption of prototypical silicon clusters. Our clusters contain 5 silicon atoms, tetrahedrally coordinated and passivated with either hydrogen or oxygen. We approach this complex problem by assessing the contributions of three factors: chemical reactivity, thermal equilibration, and dielectric screening. We find that the silanone (Si=O) functional group is not chemically stable in the presence of water and exclude this as a source of significant red shift in absorption in aqueous environments. We perform first principles molecular dynamics simulations of the solvation of a chemically stable, oxygenated silicon cluster with explicit water molecules at 300 K. We find a systematic 0.7 eV red shift in the absorption gap of this cluster, which we attribute to thermally induced fluctuations in the molecular structure. Surprisingly, we find no observable screening impact of the solvent, in contrast with consistent blue shifts observed for similarly sized organic molecules in polar solvents. The predicted red shift is expected to be significantly smaller for larger Si quantum dots produced experimentally, guaranteeing that their vacuum optical properties are preserved even in aqueous environments.  相似文献   

15.
The absorption spectra of aminocoumarin C151 in water and n-hexane solution are investigated by an explicit quantum chemical solvent model. We improved the efficiency of the frozen-density embedding scheme, as used in a former study on solvatochromism (J. Chem. Phys. 2005, 122, 094115) to describe very large solvent shells. The computer time used in this new implementation scales approximately linearly (with a low prefactor) with the number of solvent molecules. We test the ability of the frozen-density embedding to describe specific solvent effects due to hydrogen bonding for a small example system, as well as the convergence of the excitation energy with the number of solvent molecules considered in the solvation shell. Calculations with up to 500 water molecules (1500 atoms) in the solvent system are carried out. The absorption spectra are studied for C151 in aqueous or n-hexane solution for direct comparison with experimental data. To obtain snapshots of the dye molecule in solution, for which subsequent excitation energies are calculated, we use a classical molecular dynamics (MD) simulation with a force field adapted to first-principles calculations. In the calculation of solvatochromic shifts between solvents of different polarity, the vertical excitation energy obtained at the equilibrium structure of the isolated chromophore is sometimes taken as a guess for the excitation energy in a nonpolar solvent. Our results show that this is, in general, not an appropriate assumption. This is mainly due to the fact that the solute dynamics is neglected. The experimental shift between n-hexane and water as solvents is qualitatively reproduced, even by the simplest embedding approximation, and the results can be improved by a partial polarization of the frozen density. It is shown that the shift is mainly due to the electronic effect of the water molecules, and the structural effects are similar in n-hexane and water. By including water molecules, which might be directly involved in the excitation, in the embedded region, an agreement with experimental values within 0.05 eV is achieved.  相似文献   

16.
The isotropic 129Xe NMR chemical shift of atomic Xe dissolved in liquid benzene was simulated by combining classical molecular dynamics and quantum chemical calculations of 129Xe nuclear magnetic shielding. Snapshots from the molecular dynamics trajectory of xenon atom in a periodic box of benzene molecules were used for the quantum chemical calculations of isotropic 129Xe chemical shift using nonrelativistic density functional theory as well as relativistic Breit?CPauli perturbation corrections. Thus, the correlation and relativistic effects as well as the temperature and dynamics effects could be included in the calculations. Theoretical results are in a very good agreement with the experimental data. The most of the experimentally observed isotropic 129Xe shift was recovered in the nonrelativistic dynamical region, while the relativistic effects explain of about 8% of the total 129Xe chemical shift.  相似文献   

17.
Solvent effects on the 99Ru NMR chemical shift of the complex fac-[Ru(CO)3I3]- are investigated computationally using density functional theory. Further, benchmark calculations of the 99Ru shift for a set of ten Ru complexes have been performed in order to calibrate the computational model and to determine the importance of relativistic effects on the 99Ru nuclear magnetic shielding and on the chemical shift. A computational model for fac-[Ru(CO)3I3]- that includes both explicit solvent molecules and a continuum model is shown to yield the best agreement with experiment. Relativistic corrections are shown to be of minor importance for determining 99Ru chemical shifts. On the other hand, the nature of the density functional is of importance. In agreement with literature data for ligand trends of 99Ru chemical shifts, the chemical shift range for different solvents is also best reproduced by a hybrid functional.  相似文献   

18.
Cryptophane cages serve as host molecules to a Xe atom. Functionalization of cryptophane-A has permitted the development of Xe as a biosensor. Synthetic routes used to prepare cryptophanes result in racemic mixtures of the chiral cages. In the preparation of a tethered cryptophane-A cage for biosensor applications, some achiral and chiral substituents such as left-handed amino acids have been used. When the substituent is achiral, the NMR signal of the Xe atom in the functionalized cage in solution is a single isotropic peak, since the Xe shielding tensor components in the R and L cages differ by no more than the signs of the off-diagonal elements. Chiral substituents can split the cage-encapsulated Xe NMR signal into one or more sets of doublets, depending on the number of asymmetric centers in the substituent. We carry out quantum mechanical calculations of Xe nuclear magnetic shielding for the Xe atom at the same strategic position within an L cryptophane-A cage, under the influence of chiral potentials that represent r or l substituents outside the cage. Calculations of the Xe shielding response in the Lr and Ll diastereomeric pairs permit the prediction of the relative order of the Xe chemical shifts in solutions containing the Rl and Ll diastereomers. Where the substituent itself possesses two chiral centers, comparison of the calculated isotropic shielding responses in the Llr, Lrl, Rll, and Lrr systems, respectively, permits the prediction of the Xe spectrum of diastereomeric systems in solutions containing Llr, Rlr, Lll, and Rll systems. Assignment of the peaks observed in the experimental Xe NMR spectra is therefore possible, without having to undertake the difficult synthetic route that produces a single optically pure enantiomer.  相似文献   

19.
We report, for the first time, a theoretical prediction of the (129)Xe nuclear magnetic resonance chemical shift tensor of xenon atom in a single crystal of silicalite at near-zero occupancy and the temperature dependence of the Xe NMR chemical shift tensor for the polycrystalline silicalite at maximum occupancy. The former is a measure of the sensitivity of the Xe tensor components to the local structure of the channels without Xe-Xe contributions. The latter is a measure of the sensitivity of the Xe-Xe tensor components to the Xe-Xe distributions, as determined by the Xe-Xe potential function in competition with the Xe-silicalite potential function. Both theoretical predictions can be compared against Xe NMR experiments: the first against the Xe spectra collected as a function of rotation of the single crystal about the three crystalline axes in a magnetic field, and the second against variable temperature Xe NMR studies (below room temperature) of polycrystalline silicalite at maximum Xe occupancy. With the same parameter set (Xe-O potential and shielding functions), we predict the line shapes of Xe in SSZ-24 zeolite under various conditions of occupancy and temperature.  相似文献   

20.
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7+/-0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号