首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of solvent effects and dynamic averaging on the (195)Pt NMR shielding and chemical shifts of cisplatin and three cisplatin derivatives in aqueous solution were computed using explicit and implicit solvation models. Within the density functional theory framework, these simulations were carried out by combining ab initio molecular dynamics (aiMD) simulations for the phase space sampling with all-electron relativistic NMR shielding tensor calculations using the zeroth-order regular approximation. Structural analyses support the presence of a solvent-assisted "inverse" or "anionic" hydration previously observed in similar square-planar transition-metal complexes. Comparisons with computationally less demanding implicit solvent models show that error cancellation is ubiquitous when dealing with liquid-state NMR simulations. After aiMD averaging, the calculated chemical shifts for the four complexes are in good agreement with experiment, with relative deviations between theory and experiment of about 5% on average (1% of the Pt(II) chemical shift range).  相似文献   

2.
We have applied computational protocols based on DFT and molecular dynamics simulations to the prediction of the alkyl 1H and 13C chemical shifts of alpha-d-glucose in water. Computed data have been compared with accurate experimental chemical shifts obtained in our laboratory. 13C chemical shifts do not show a marked solvent effect. In contrast, the results for 1H chemical shifts provided by structures optimized in the gas phase are only fair and point out that it is necessary to take into account both the flexibility of the glucose structure and the strong effect exerted by solvent water thereupon. Thus, molecular dynamics simulations were carried out to model both the internal geometry as well as the influence of solvent molecules on the conformational distribution of the solute. Snapshots from the simulation were used as input to DFT NMR calculations with varying degrees of sophistication. The most important factor that affects the accuracy of computed 1H chemical shifts is the solute geometry; the effect of the solvent on the shielding constants can be reasonably accounted for by self-consistent reaction field models without the need of explicitly including solvent molecules in the NMR property calculation.  相似文献   

3.
4.
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.  相似文献   

5.
15N NMR chemical shifts and n-->pi* electronic transition energy for metronidazole (1) has been calculated and compared with experimental data. A detailed computational study of 1 is presented, with special attention to the performance of various theoretical methods for reproducing spectroscopic parameters in solution. The most sophisticated approach involves density functional based on the Car-Parrinello molecular dynamics simulations of 1 in aqueous solution (BP86 level) and averaging chemical shifts and deltaE(n-->pi*) over snapshots from the trajectory. In the NMR and UV calculations for these snapshots (performed at the B3LYP level), a small number of discrete water molecules are retained, and the remaining bulk solution effects are included via a polarizable continuum model (PCM). A good agreement with experiment is also obtained using static geometry optimization and NMR computation of pristine 1 employing a PCM approach. Further theoretical predictions are also reported for 17O NMR and deltaE(n-->pi*) of three hydroxycinnamic acid derivatives, which suggest that it is essential to incorporate the dynamics and solvent effects for NMR and UV calculations in the condensed phase.  相似文献   

6.
IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the (1)H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating (13)C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice.  相似文献   

7.
The nuclear magnetic shielding tensor is a sensitive probe of the local electronic environment, providing information about molecular structure and intermolecular interactions. The magnetic shielding tensor of the water proton has been determined in hexagonal ice, but in liquid water, where the tensor is isotropically averaged by rapid molecular tumbling, only the trace of the tensor has been measured. We report here the first determination of the proton shielding anisotropy in liquid water, which, when combined with chemical shift data, yields the principal shielding components parallel (sigma(parallel)) and perpendicular (sigma(perpendicular)) to the O-H bond. We obtained the shielding anisotropy sigma(parallel)-sigma(perpendicular) by measuring the proton spin relaxation rate as a function of magnetic induction field in a water sample where dipole-dipole couplings are suppressed by H/D isotope dilution. The temperature dependence of the shielding components, determined from 0 to 80 degrees C, reflects vibrational averaging over a distribution of instantaneous hydrogen-bond geometries in the liquid and thus contains unique information about the temperature-dependent structure of liquid water. The temperature dependence of the shielding anisotropy is found to be 4 times stronger than that of the isotropic shielding. We analyze the liquid water shielding components in the light of previous NMR and theoretical results for vapor and ice. We show that a simple two-state model of water structure fails to give a consistent interpretation of the shielding data and we argue that a more detailed analysis is needed that quantitatively relates the shielding components to hydrogen bond geometry.  相似文献   

8.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

9.
The gas-to-aqueous solution shifts of the 17O and 13C NMR isotropic shielding constants for the carbonyl chromophore in formaldehyde and acetone are investigated. For the condensed-phase problem, we use the hybrid density functional theory/molecular mechanics approach in combination with a statistical averaging over an appropriate number of solute-solvent configurations extracted from classical molecular dynamics simulations. The PBE0 exchange-correlation functional and the 6-311++G(2d,2p) basis set are used for the calculation of the shielding constants. London atomic orbitals are employed to ensure gauge-origin independent results. The effects of the bulk solvent molecules are found to be crucial in order to calculate accurate solvation shifts of the shielding constants. Very good agreement between the computed and experimental solvation shifts is obtained for the shielding constants of acetone when a polarizable water potential is used. Supermolecular results based on geometry-optimized molecular structures are presented. We also compare the results obtained with the polarizable continuum model to the results obtained using explicit MM molecules to model the bulk solvent effect.  相似文献   

10.
Although difficult to analyze, NMR chemical shifts provide detailed information on protein structure. We have adapted the semi-empirical bond polarization theory (BPT) to protein chemical shift calculation and chemical shift driven protein structure refinement. A new parameterization for BPT amide nitrogen chemical shift calculation has been derived from MP2 ab initio calculations and successfully evaluated using crystalline tripeptides. We computed the chemical shifts of the small globular protein ubiquitin, demonstrating that BPT calculations can match the results obtained at the DFT level of theory at very low computational cost. In addition to the calculation of chemical shift tensors, BPT allows the calculation of chemical shift gradients and consequently chemical shift driven geometry optimizations. We applied chemical shift driven protein structure refinement to the conformational analysis of a set of Trypanosoma brucei (the causative agent of African sleeping sickness) tryparedoxin peroxidase Px III structures. We found that the interaction of Px III with its reaction partner Tpx seems to be governed by conformational selection rather than by induced fit.  相似文献   

11.
The influence of solvent nature, relativistic effects, and vibrational corrections on the accuracy of calculation of 31P chemical shifts of the simplest phosphines, phosphine oxides, phosphine sulfides, and phosphine selenides was studied. Consideration of the above factors at the stage of both geometry optimization and calculation of magnetic shielding constants was found to appreciably improve the accuracy of calculation of 31P NMR chemical shifts in the series of phosphines and phosphine chalcogenides.  相似文献   

12.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

13.
Both zero-point and classical thermal effects on the chemical shift of transition metals have been calculated at appropriate levels of density functional theory for a number of complexes of titanium, vanadium, manganese and iron. The zero-point effects were computed by applying a perturbational approach, whereas classical thermal effects were probed by Car-Parrinello molecular dynamics simulations. The systematic investigation shows that both procedures lead to a deshielding of the magnetic shielding constants evaluated at the GIAO-B3 LYP level, which in general also leads to a downfield shift in the relative chemical shifts, delta. The effect is small for the titanium and vanadium complexes, where it is typically on the order of a few dozen ppm, and is larger for the manganese and iron complexes, where it can amount to several hundred ppm. Zero-point corrections are usually smaller than the classical thermal effect. The pronounced downfield shift is due to the sensitivity of the shielding of the metal centre with regard to the metal-ligand bond length, which increase upon vibrational averaging. Both applied methods improve the accuracy of the chemical shifts in some cases, but not in general.  相似文献   

14.
Based on the nucleus‐independent chemical shift (NICS) concept, isotropic magnetic shielding values have been computed along the three Cartesian axes for ethene, cyclobutadiene, benzene, naphthalene, and benzocyclobutadiene, starting from the molecular/ring center up to 10 Å away. These through‐space NMR spectroscopic shielding (TSNMRS) values, which reflect the anisotropic effects, have been broken down into contributions from localized‐ and canonical molecular orbitals (LMOs and CMOs); these contributions revealed that the proton NMR spectroscopic chemical shifts of nuclei that are spatially close to the C?C double bond or the aromatic ring should not be explained in terms of the conventionally accepted π‐electron shielding/deshielding effects. In fact, these effects followed the predictions only for the antiaromatic cyclobutadiene ring.  相似文献   

15.
In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.  相似文献   

16.
Solvent effects on the 99Ru NMR chemical shift of the complex fac-[Ru(CO)3I3]- are investigated computationally using density functional theory. Further, benchmark calculations of the 99Ru shift for a set of ten Ru complexes have been performed in order to calibrate the computational model and to determine the importance of relativistic effects on the 99Ru nuclear magnetic shielding and on the chemical shift. A computational model for fac-[Ru(CO)3I3]- that includes both explicit solvent molecules and a continuum model is shown to yield the best agreement with experiment. Relativistic corrections are shown to be of minor importance for determining 99Ru chemical shifts. On the other hand, the nature of the density functional is of importance. In agreement with literature data for ligand trends of 99Ru chemical shifts, the chemical shift range for different solvents is also best reproduced by a hybrid functional.  相似文献   

17.
Intermolecular coordination effects on the 31P NMR spectra of molecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorus pentachloride were studied by theoretical and experimental methods. The formation of intermolecular dative N→P bond was shown to be accompanied by upfield shift of the phosphorus resonance signal by more than 200 ppm. Appreciable contribution of relativistic effects to 31P NMR chemical shifts was revealed; the spin-orbital contribution to 31P shielding constant was estimated at >210 ppm. Consideration of solvent effect was found to be crucial while studying steric structure of molecular complexes of azoles with phosphorus pentachloride and intermolecular coordination effects on 31P NMR chemical shifts.  相似文献   

18.
Selected theoretical methods, basis sets and solvation models have been tested in their ability to predict (31)P NMR chemical shifts of large phosphorous-containing molecular systems in solution. The most efficient strategy was found to involve NMR shift calculations at the GIAO-MPW1K/6-311++G(2d,2p)//MPW1K/6-31G(d) level in combination with a dual solvation model including the explicit consideration of single solvent molecules and a continuum (PCM) solvation model. For larger systems it has also been established that reliable (31)P shift predictions require Boltzmann averaging over all accessible conformations in solution.  相似文献   

19.
Dependence of NMR (31)P shielding tensor and (2)J(P,C) coupling constants on solvation of nucleic acid phosphate by Mg(2+) and water was studied using methods of bioinformatic structural analyses of crystallographic data and DFT B3LYP calculations of NMR parameters. The effect of solvent dynamics on NMR parameters was calculated using molecular dynamic. The NMR calculations for representative solvation patterns determined in crystals of B-DNA and A-RNA molecules pointed out the crucial importance of local Mg(2+) coordination geometry, including hydration by explicit water molecules and necessity of dynamical averaging over the solvent reorientation. The dynamically averaged (31)P chemical shift decreased by 2-9.5 ppm upon Mg(2+) coordination, the chemical shielding anisotropy increased by 0-20 ppm, and the (2)J(P,C5') coupling magnitude decreased by 0.2-1.8 Hz upon Mg(2+) coordination. The calculated decrease of the (31)P chemical shift is in excellent agreement with the 1.5-10 ppm decrease of the phosphorothioate (31)P chemical shift upon Cd(2+) coordination probed experimentally in hammerhead ribozyme (Suzumura; et al. J. Am. Chem. Soc. 2002, 124, 8230-8236; Osborne; et al., Biochemistry 2009, 48, 10654-10664). None of the dynamically averaged NMR parameters unequivocally distinguishes the site-specific Mg(2+) coordination to one of the two nonesterified phosphate oxygen atoms of the phosphate determined by bioinformatic analyses. By comparing the limit cases of static and dynamically averaged solvation, we propose that mobility of the solvent has a dramatic impact on NMR parameters of nucleic acid phosphate and must be taken into account for their accurate modeling.  相似文献   

20.
We present a combined molecular dynamics simulation and density functional theory investigation of the nuclear magnetic shielding constant of the (113)Cd(II) ion solvated in aqueous solution. Molecular dynamics simulations are carried out for the cadmium-water system in order to produce instantaneous geometries for subsequent determination of the nuclear magnetic shielding constant at the density functional theory level. The nuclear magnetic shielding constant is computed using a perturbation theory formalism, which includes nonrelativistic and leading order relativistic contributions to the nuclear magnetic shielding tensor. Although the NMR shielding constant varies significantly with respect to simulation time, the value averaged over increasing number of snapshots remains almost constant. The paramagnetic nonrelativistic contribution is found to be most sensitive to dynamical changes in the system and is mainly responsible for the thermal and solvent effects in solution. The relativistic correction features very little sensitivity to the chemical environment, and can be disregarded in theoretical calculations when a Cd complex is used as reference compound in (113)Cd NMR experiments, due to the mutual cancelation between individual relativistic corrections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号