首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Using a Nier-type electron impact ion source in combination with a double focusing two sector field mass spectrometer, partial cross sections for electron impact ionization of acetylene are measured for electron energies up to 1000 eV. Discrimination factors for ions are determined using the deflection field method in combination with a three-dimensional ion trajectory simulation of ions produced in the ion source. Analysis of the ion yield curves obtained by scanning the deflectors allows the assignment of ions with the same mass-to-charge ratio to specific production channels on the basis of their different kinetic energy distributions. This analysis also allows to determine, besides kinetic energy distributions of fragment ions, partial cross sections differential in kinetic energy. Moreover a charge separation reaction, the Coulomb explosion of the doubly charged parent ions C2H2++ into the fragment ions C2H+ and H+, is investigated and its mean kinetic energy release (KER=3.88 eV) is deduced.  相似文献   

2.
We present absolute partial electron impact ionization cross sections for ethylene in the electron energy range between threshold and 1000 eV measured with a two sector field double focusing mass spectrometer. Ion kinetic energy distribution functions have been measured at all electron energies by applying a deflection field method. Multiplication of the measured relative cross sections by the appropriately determined discrimination factors lead to accurate relative partial cross sections. Normalization of the sum of the relative partial cross sections to an absolute total cross section gives absolute partial cross section values. The initial kinetic energy distributions of several fragment ions show the presence of two or more contributions that exhibit different electron energy dependencies. Differential cross sections with respect to the initial kinetic energy of the ions are provided and are related to specific ion production channels. The electron threshold energies for the direct and numerous other dissociative ionization channels are determined by quantum chemical calculation and these allow the determination of the total kinetic energy release and the electron energy loss for the most prominent dissociative ionization channels.  相似文献   

3.
Doubly charged ion mass spectra of 23 alkenes have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Ion mass spectra were obtained using 100 eV electron energy and 3.2 kV ion accelerating voltage. Each 2E spectrum was determined using the olefinic compound under investigation as the target gas. In general, spectra are dominated by fragment ions which result from extensive hydrogen loss from the doubly charged molecular ion. Appearnce energies have been measured for intense fragment ions in each spectrum.  相似文献   

4.
Resonant electron attachment by orotic acid molecules (6-COOH-uracil) are studied in the energy range of 0–14 eV via negative ion mass spectrometry. Molecular ions, whose lifetimes relative to electron autodetachment are found to be ~300 μs are recorded in the region of thermal electron energies; they form in the valence state through a vibration-excited resonance mechanism. Unlike unsubstituted uracil, most dissociative processes occur in the low-energy region of <4 eV and are due to carboxylic anions. An absolute cross section of 2.4 × 10?17 cm2 is found for the most intense fragment ions [M–H] at an output energy of 1.33 eV. The kinetics of decarboxylation is considered for these ions. This could be a model reaction for the last stage of uridine monophosphate biosynthesis.  相似文献   

5.
The processes of negative ions formation of dipeptides glycyl-glycine, glycyl-alanine and alanyl-alanine in the conditions of resonant electron capture have been studied with a help of negative ions mass spectrometry. Using a thermochemical approach, the main channels of fragment negative ions formation were found and the structure of the ions were established. The isobaric ions have been identified by the experiments with high mass resolution. The cross sections of fragment ions formation were measured. The metastable fragmentation of [M-H](-) and [M-COOH](-) ions in the energy range 4.5-7.5 eV have been found.  相似文献   

6.
The primary structure of 3'-imino[60]fulleryl-3'-deoxythymidine ions is studied using mass spectrometry both in the positive and negative modes. Interaction between the subunits is discussed using collision-induced dissociation (CID) spectra. Collisional activation with argon of the sodiated cations leads to the cleavage of the glycosidic bond and the transfer of a radical hydrogen from the deoxyribose to the thymine. The sodiated thymine is the only fragment observed for low collision energies in the positive mode. In the negative mode, two different ionization mechanisms take place, reduction and deprotonation in the presence of triethylamine. The 2.7 eV electron affinity of C60 and its huge cross section compared to the small cross section and predicted 0.44 eV electron affinity of the thymidine subunit most likely localize the radical electron on the fullerene. On the other hand, deprotonation of the 3'-azido-3'-deoxythymidine (AZT) is known to occur in N-3, the most acidic site of the nucleobase. Consequently, deprotonation causes the negative charge to be initially localized on the thymine. Both types of parent anions give the radical anion C60*- as fragment. The other fragments detected are the dehydrogenated 3'-imino[60]fulleryl-3'-deoxyribose anion, C60NH2-, C60N- and C60H-. Since in negative ion mass spectrometry all fragments include the [60]fullerene unit, this suggests that the fragmentation is driven by the electron affinity of the [60]fullerene, likely responsible for a charge transfer between the deprotonated thymine and the C60.  相似文献   

7.
This paper reports a study of resonant dissociative electron attachment (DEA) to the phenol, chlorobenzene, p-, m-, and o-chlorophenol molecules. On the basis of spectroscopic and thermochemical approaches the resonant states of the molecular negative ions (NIs) and the structures of some dissociative decay products are assigned. In the electron energy range up to 3 eV, DEA processes are determined by the two 2[pi*]-shape resonances resulting mainly in formation of [M-H]- and/or Cl- ions. At higher electron energies the energy correlation between peaks in the negative ion effective yield curves and bands of UV spectra allowed identification of the core-excited resonances. The peculiarities of Cl- ion formation and the vibrational fine structure on the effective yield curves of the [M-H]- ions are discussed. The mass spectrometric procedures for measurement of relative cross sections for NI formation are described.  相似文献   

8.
The inelastic electron interaction (ionization/attachment) with chloroform embedded in helium droplets has been studied utilizing a two-sector field mass spectrometer. Positive mass spectra have been recorded at the electron energy of 70 eV and are compared with previous results in the gas phase and with other systems embedded in helium droplets. Moreover, the negative ion mass spectrum has been recorded at the electron energy of 1.5 eV. Both negative and positive mass spectra show that chloroform clusters are easily formed by embedding single molecules in the helium droplets. Moreover, for anions appearing in the mass spectrum, the ion yield has been determined as function of the electron energy. While no parent anion of chloroform can be observed in the gas phase, the present cluster environment allows the stabilization of the transient negative ion. The influence of the helium droplet upon the ionization or attachment process of the embedded chloroform is discussed.  相似文献   

9.
We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.  相似文献   

10.
Low-energy (0-12 eV) electron attachment to molecules of a typical matrix substance used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), namely alpha-cyano-4-hydroxicynnamic acid, has been investigated in the gas phase at different temperatures ranging from 140 degrees C to 260 degrees C by means of electron capture negative-ion mass spectrometry (ECNI MS). The yield of negative ions, formed by electron capture, was measured as a function of incident electron energy for four different temperatures. The long-lived parent molecular anion, [M]- (m/z 189), was observed in the negative-ion mass spectra of the substance under investigation. Its autodetachment lifetime was estimated to be approximately 600 micros. It was found that at 140 degrees C the main decay channel of the long-lived temporary molecular anion of alpha-cyano-4-hydroxicynnamic acid is a formation of the [M-COOH]-; fragment negative ion (m/z 144) with an intensity of 37.2% in percentage terms in respect of the total anion current. There are also [M-H]-, [M-CO2]- and [CN]- fragments in the spectra with intensities of about 7.7%, 21.6% and 3.1% at 140 degrees C. It was shown that the escape of the CO2 molecule from the parent molecular anion is a slow process. It takes [M]- about 10 micros to decay on carbon dioxide molecules and [M-CO2]- fragment anions. Increasing the temperature of the target molecule alters the negative-ion mass spectra of alpha-cyano-4-hydroxicynnamic acid significantly. A possible role for the findings in typical MALDI MS experiments is discussed.  相似文献   

11.
Electron attachment to the polyaromatic hydrocarbons coronene and corannulene is studied in the electron energy range of about 0-14 eV using a high-resolution crossed electron-neutral beam setup. The major anions observed are the parent anions peaking at about 0 eV with cross sections of 3.8 x 10(-20) and 1 x 10(-19) m(2), respectively. The only fragment anions formed in coronene and corannulene are the dehydrogenated coronene and corannulene anions. Other anions observed in the negative mass spectra at about 0 eV can be ascribed to impurities of the sample. High-level quantum-mechanical studies are carried out for the determination of electron affinities, hydrogen binding energies, and structures of both molecules. The behavior of coronene and corannulene upon electron attachment is compared with that of other polyaromatic hydrocarbons studied previously.  相似文献   

12.
Dissociative electron attachment to gas phase glycine generates a number of fragment ions, among them ions observed at the mass numbers 15, 16 and 26 amu. From stoichiometry they can be assigned to the chemically rather different species NH(-)/CH(3)(-)(15 amu), O(-)/NH(2)(-)(16 amu) and CN(-)/C(2)H(2)(-)(26 amu). Here we use a high resolution double focusing two sector mass spectrometer to separate these isobaric ions. It is thereby possible to unravel the decomposition reactions of the different transient negative ions formed upon resonant electron attachment to neutral glycine in the energy range 0-15 eV. We find that within the isobaric ion pairs, the individual components generally arise from resonances located at substantial different energies. The corresponding unimolecular decompositions involve complex reaction sequences including multiple bond cleavages and substantial rearrangement in the precursor ion. To support the interpretation and assignments we also use (13)C labelling of glycine at the carboxylic group.  相似文献   

13.
The partial ionization cross section for the formation of SF(3) (+) fragment ions following electron impact on SF(6) is known to have a pronounced structure in the cross section curve slightly above 40 eV. We used the mass-analyzed ion kinetic energy (MIKE) scan technique to demonstrate the presence of a channel contributing to the SF(3) (+) partial ionization cross section that we attribute to the Coulomb explosion of doubly charged metastable SF(4) (2+) ions into two singly charged ions SF(3) (+) and F(+), with a threshold energy of about 45.5 eV. Thus the observed unusual shape of the SF(3) (+) partial ionization cross section is the result of two contributions, (i) the direct formation of SF(3) (+) fragment ions via dissociative ionization of SF(6) with a threshold energy of 22 eV and (ii) the Coulomb explosion of metastable SF(4) (2+) ions with a threshold energy of about 45.5 eV. A detailed analysis of the MIKE spectrum reveals an average kinetic energy release of about 5 eV in the Coulomb explosion of the SF(4) (2+) ions with evidence of a second channel corresponding to an average kinetic energy release of about 1.1 eV.  相似文献   

14.
The yield curves for photoions from Ce@C(82) are measured by using synchrotron radiation in the photon energy range from 90 to 160 eV. Parent Ce@C(82) (z+) and fragment ions C(60) (z+) and C(70) (z+) are observed in a mass spectrum (z=1 and 2). The yield curves for doubly charged ionic species exhibit broad resonance in the photon energy region of from 120 to 140 eV which is ascribed to the 4d-->4f giant dipole resonance of the encapsulated Ce atom. The total photoabsorption cross section of Ce@C(82) was determined from partial photoionization cross sections for formation of the parent and fragment ions to be 5.3(-1.1) (+1.8) and 19.6(-3.9) (+6.5) Mb at photon energies of 110 and 130 eV, respectively.  相似文献   

15.
The isomeric structure of high‐mannose N‐glycans can significantly impact biological recognition events. Here, the utility of travelling‐wave ion mobility mass spectrometry for isomer separation of high‐mannose N‐glycans is investigated. Negative ion fragmentation using collision‐induced dissociation gave more informative spectra than positive ion spectra with mass‐different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling‐wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N‐glycans released from the well‐characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross‐sectional data, details of the negative ion collision‐induced dissociation spectra of all resolved isomers are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Doubly charged ion mass spectra of 20 aliphatic and 3 aromatic acetylenic compounds have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Spectra were obtained using 100 eV ionizing electron energy and 3.2 kV ion accelerating voltage. In general, the spectra of aliphatic type acetylenic compounds were dominated by fragment ions formed by extensive H loss from doubly charged molecular ions. Intense molecular ions were observed in the doubly charged ion spectra of phenyl-substituted acetylenes. Total product ion intensities for doubly charged ion spectra of acetylenic compounds were found to be smaller, in general, than the total product ion intensity observed in the benzene doubly charged ion mass spectrum. Measured appearance energies of intense product ions ranged from 24 to 47 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was employed to compute energies and structural parameters of prominent ions in the doubly charged ion mass spectra of acetylenic compounds.  相似文献   

17.
Temporary negative ion formation in ethylene and 1,3-butadiene has been studied using high resolution, low energy electron scattering. Sharp structure in the total electron scattering cross section allows the adiabatic electron affinity of each molecule to be determined leading to values of ?1.55 ± 0.1 eV for ethylene and ?0.62 ± 0.05 eV for 1,3-butadiene.  相似文献   

18.
Low energy electron impact to the isomers 6-chlorouracil (6-ClU) and 5-chlorouracil (5-ClU) yields a variety of negative ion fragments with surprisingly high cross sections. These ions are dominantly formed via sharply structured resonance features at energies below the threshold for electronic excitation and result from dissociative electron attachment (DEA). The most dominant DEA channel is formation of (M-HCl)-, i.e., ejection of a neutral HCl molecule with the negative charge remaining on the ring. The reaction cross section is 9 x 10(-18) m2 and 5 x 10(-18) m2 for 6-Cl and 5-ClU, respectively, and thus about two orders of magnitude higher than the geometrical cross section of the molecule. Further reactions also operative via low energy resonances (<2.5 eV) are Cl- abstraction, dehydrogenation [formation of (M-H)-, M=ClU], and DEA processes associated with a ring opening. Most of the ion yield curves exhibit remarkably sharp structures which have not been observed before in DEA to a polyatomic system. Although some possibilities on their origin are discussed, their interpretation remains a challenge for theory and further experiments. While electron attachment to both 6-ClU and 5-ClU generates fragments of the same stoichiometric composition, their ion yields and also their relative intensities show some very pronounced differences which can be explained by the different structure but also the different energetic situation in the two isomers.  相似文献   

19.
Doubly charged ion mass spectra have been obtained for 11 organophosphorus compounds. Methane has been used as a target gas to increase the probability of single electron transfer collisions in the first field-free region of an Hitachi RMU-7L mass spectrometer. In general, the spectra of organophosphorus compounds do not exhibit molecular ions but are dominated by fragment ions, many of which must be formed by rearrangement processes. A geometry-optimized self-consistent field molecular orbital method has been employed to compute energies and structural parameters for prominent ions. In addition, a diabatic curve crossing model has been used to examine the single electron transfer reactions responsible for intense ions in the doubly charged ion mass spectra. Appearance energies measured for ions prominent in the 2E spectra of organophosphorus compounds have ranged from 23 to 38 eV.  相似文献   

20.
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号