首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Copolymer microgels based on N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) have been synthesized by free radical emulsion polymerization using N,N-methylenebisacrylamide (BIS) as a cross-linker. Synthesized microgels were characterized by Fourier transform infrared spectroscopy (FTIR). Then silver nanoparticles were fabricated in the synthesized microgels by in-situ reduction of AgNO3 with NaBH4. The formation of silver nanoparticles was confirmed by UV–Vis spectroscopy. The pH sensitivity of the copolymer microgels was investigated using dynamic light scattering technique (DLS). Hydrodynamic radius of P (NIPAM–MAA) microgels increases with increase in pH of the medium at 25°C. Surface plasmon resonance wavelength (λSPR) of silver nanoparticles increases with increase in hydrodynamic radius due to change in pH of the medium. The catalytic activity for the reduction of nitrobenzene (NB), an environmental pollutant, into aniline was investigated by UV–Vis spectroscopy in excess of NaBH4 using hybrid microgels as catalyst. The value of apparent rate constant (kapp) of the reaction was calculated using pseudo first order kinetic model and it was found to be linearly related to the amount of catalyst. The results were compared with literature data. The system was found to be an effective catalyst for conversion of NB into aniline.  相似文献   

2.
Poly(N-isopropylacrylamide-acrylamide-phenylboronic acid) [P(NIPAM-AAm-PBA)] microgels of uniform size were prepared by the chemical reaction of 3-aminophenylboronic acid with poly(N-isopropylacrylamide-acrylamide-acrylic acid) [P(NIPAM-AAm-AA)] microgels in aqueous medium in the presence of N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride catalyst via carbodiimide coupling. Silver (Ag) nanoparticles were prepared using seed-mediated growth method and stabilized in P(NIPAM-AAm-PBA)] microgels. Ag nanoparticles and hybrid microgels were characterized by transmission electron microscopy, UV–visible, and dynamic light scattering techniques. The temperature-responsive behavior of hybrid microgels was found to be similar to that of the pure microgels. The value of volume transition temperature of hybrid microgels was found to be slightly higher than that of pure microgels due to shielding effect of Ag nanoparticles present on the surface of microgel particle. The decrease in the size of hybrid microgels as compared to that of pure microgels in swollen state is due to physical cross-linking by Ag nanoparticles inside the network of microgels. The stable hybrid polymer microgel system has a potential to be used for different applications.  相似文献   

3.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

4.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
杜滨阳 《高分子科学》2011,29(4):439-449
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N-isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-co-AM-co-TMSPMA) microgels were prepared via two different methods. The first method was that the microgels were post-fabricated from the crosslinkable linear P(NIPAM-co-AM-co-TMSPMA) terpolymer aqueous solutions above the lower critical solution temperature (LCST) of the terpolymer. For the second method, the microgels were directly synthesized by conventional surfactant free emulsion copolymerization of NIPAM, AM, and TMSPMA. The hydrodynamic diameter and stability of the resultant P(NIPAM-co-AM-co-TMSPMA) microgels strongly depend on the pH and temperature of the microgel aqueous solution. The hydrodynamic diameters of the microgels decreased with increasing the measuring temperature. The phase transition temperature of the microgels was found to be around 34°C, which was independent of the initial terpolymer concentration and shifted to lower temperature with increasing the preparation temperature. Increasing the initial amount of AM will enhance the instability of the microgels at high pH values. Moreover, the P(NIPAM-co-AM-co-TMSPMA) microgels obtained from the linear terpolymer had more homogeneous microstructures as compared with the corresponding NIPAM/AM/TMSPMA microgels prepared by one step emulsion copolymerization as revealed by light scattering measurements.  相似文献   

6.
A temperature- and pH-responsive polymeric surfactant was prepared by copolymerizing N-isopropylacrylamide, methacrylic acid, and octadecylacrylate. Poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate) (P(NIPAM-MAA-ODA) was used as an emulsifier for the preparation of water-in-oil emulsions. The mean droplet size at room temperature was almost constant for 50 hours at pH 5.0, 7.0, and 9.0. However, the size markedly increased for 50 hours at pH 3.0, possibly because of the low hydrophilicity of the copolymer and the small interfacial area one molecule of the copolymer can stabilize at a low pH value. The droplet size markedly decreased from 4.7 to 1.8 µm, when the pH of medium increased from 5.0 to 9.0 with the temperature kept constant. This may be ascribed to that the hydrophilicity of the copolymer and the interfacial area one molecule of copolymer can stabilize will be higher at a higher pH value. When the temperature increased over 35°C with the pH kept constant, the droplet size significantly increased probably because the NIPAM segment of the copolymer becomes hydrophobic with increasing the temperature so the copolymer would poorly act as an emulsifier.  相似文献   

7.
Copper sulfide‐poly(isopropylacrylamide‐co‐methacrylic acid) [CuS‐P(NIPAM‐co‐MAA)] hybrid microgels with patterned surface structures have been synthesized by means of the polymer microgel template technique. The results showed that the surface morphology of the hybrid microgels could be regulated by controlling the decomposition of thioacetamide (TAA) in an acidic medium. The rate of precipitation and the amount of metal sulfide significantly affect the surface structures of the hybrid microgels.  相似文献   

8.
《中国化学》2017,35(11):1755-1760
The assembly of preformed gold nanoparticles (AuNPs ) onto the thermoresponsive poly(N ‐isopropylacrylamide) (PNIPAM )‐based microgels was achieved on the basis of the driving force of Au‐thiol chemistry. The loading amount of AuNPs can be controlled by varying the ratio of AuNPs relative to PNIPAM ‐based microgels. The as‐prepared PNIPAM /Au hybrid microgels showed well‐defined reversible swelling/deswelling transition in response to temperature, which can be employed to tune the plasmonic property of hybrid microgels. As the temperature was increased, the position of localized surface plasmon resonance (LSPR ) band red‐shifted to some extent mainly due to the increase in the local refractive index around AuNPs .  相似文献   

9.
Summary: Hybrid microgels functionalized with silver nanoparticles (AgNP) have been prepared and their physico‐chemical properties examined. Composite particles have been obtained by formation of AgNP in presence of poly[vinylcaprolactam‐co‐(acetoacetoxyethyl methacrylate)] (VCL/AAEM) microgel particles. It has been demonstrated that hybrid particles with different AgNP amounts can be prepared. Hybrid particles are sensitive to temperature and swelling, and collapse processes are reversible. Incorporation of AgNP leads to shrinkage of microgel template due to the partial immobilization of polymer chains on the microgel surface. As a consequence, gradual loss of temperature sensitivity is observed. Hybrid microgels form highly transparent well‐organized films on solid substrates, providing homogeneous distribution of AgNP in bulk material. Presence of AgNP increases considerably the thermal stability of composite films.

Schematic representation (left) and TEM image (right) of hybrid microgels containing silver nanoparticles (AgNP).  相似文献   


10.
A novel pH- and temperature-sensitive nanocomposite microgel based on linear Poly(acrylic acid) (PAAc) and Poly(N-isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was synthesized by a two-step method. First, PNIPA microgel was prepared via surfactant-free emulsion polymerization by using inorganic clay as a crosslinker, and then AAc monomer was polymerized within the PNIPA microgel. The structure and morphology of the microgel were confirmed by FTIR, WXRD and TEM. The results indicated that the exfoliated clay platelets were dispersed homogeneously in the PNIPA microgels and acted as a multifunctional crosslinker, while the linear PAAc polymer chains incorporated in the PNIPA microgel network to form a semi-interpenetrating polymer network (semi-IPN) structure. The hydrodynamic diameters of the semi-IPN microgels ranged from 360 to 400 nm, which was much smaller than that of the conventional microgel prepared by using N,N′-methylenebis(acrylamide) (MBA) as a chemical crosslinker, the later was about 740 nm. The semi-IPN microgels exhibited good pH- and temperature-sensitivity, which could respond independently to both pH and temperature changes.  相似文献   

11.
Stable suspensions of protein microgels are formed by heating salt-free β-lactoglobulin solutions at concentrations up to about C = 50 g·L(-1) if the pH is set within a narrow range between 5.75 and 6.1. The internal protein concentration of these spherical particles is about 150 g·L(-1) and the average hydrodynamic radius decreases with increasing pH from 200 to 75 nm. The formation of the microgels leads to an increase of the pH, which is a necessary condition to obtain stable suspensions. The spontaneous increase of the pH during microgel formation leads to an increase of their surface charge density and inhibits secondary aggregation. This self-stabilization mechanism is not sufficient if the initial pH is below 5.75 in which case secondary aggregation leads to precipitation. Microgels are no longer formed above a critical initial pH, but instead short, curved protein strands are obtained with a hydrodynamic radius of about 15-20 nm.  相似文献   

12.
Surfactant-free, radical precipitation copolymerization of N-isopropylmethacrylamide and the cationic co-monomer N-(3-aminopropyl) methacrylamide hydrochloride (APMH) was carried out to prepare microgels functionalized with primary amines. The morphology and hydrodynamic diameter of the microgels were characterized by atomic force microscopy and photon correlation spectroscopy, with the effect of NaCl concentration and initiator type on the microgel size and yield being investigated. When a 2,2′-azobis (2-amidinopropane) dihydrochloride (V50)-initiated reaction was carried out in pure water, relatively small microgels (∼160 nm in diameter) were obtained in low yield (∼20%). However, both the yield and size increased if the reaction was carried out in saline or by using ammonium persulfate as initiator instead of V50. Stable amine-laden microgels in the range from 160 to 950 nm in diameter with narrow size distributions were thus produced using reaction media with controlled salinity. Microgel swelling and electrophoretic mobility values as a function of pH, ionic strength, and temperature were also studied, illustrating the presence of cationic sidechains and their influence on microgel properties. Finally, the availability of the primary amine groups for post-polymerization modification was confirmed via modification with fluorescein-N-hydroxysuccinamide.  相似文献   

13.
用沉降聚合法制备了聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)微凝胶, 并用NMR, DLS分析测定了微凝胶结构及凝胶颗粒在不同离子强度下粒径和表面电势的变化. 25 ℃时在pH=7的溶液中Zeta电位为-18 mV, 随离子强度增加, 逐渐减小. 当NaCl浓度达0.2 mol/L时基本不变, 表明微凝胶表面电荷受到屏蔽, 浓度继续增加主要使凝胶颗粒收缩. 加热引起微凝胶收缩, 颗粒表面电荷密度增大, Zeta电位增大. 在0.2 mol/L NaCl溶液中, 41 ℃时微凝胶的Zeta电位可达-12.4 mV, 使微凝胶稳定. 较高离子强度时, Zeta电位随温度升高发生突变, 微凝胶表面几乎为中性, 其突变温度与临界絮凝温度(CFT)相当. CFT随离子强度增加向低温迁移, 微凝胶聚集速率在高温时比低温时快.  相似文献   

14.
Emulsion copolymerization of poly(methacrylic acid) and poly(2-(diethylamino)ethyl methacrylate) (PMAA/PDEA) yielded pH-responsive polyampholyte microgels of 200-300 nm in diameter. These microgels showed enhanced hydrophilic behavior in aqueous medium at low and high pH, but formed large aggregates of approximately 2500 nm at intermediate pH. To achieve colloidal stability at intermediate pH, a second batch of microgels of identical monomer composition were synthesized, where monomethoxy-capped poly(ethylene glycol)methacrylate (PEGMA) was grafted onto the surface of these particles. Dynamic light-scattering measurements showed that the hydrodynamic radius, Rh, of sterically stabilized microgels was approximately 100 nm at intermediate pH and increased to 120 and 200 nm at pH 2 and 10, respectively. Between pH 4 and 6, these microgels possessed mobility close to zero and a negative second virial coefficient, A2, due to overall charge neutralization near the isoelectric pH. From the Rh, mobility, and A2, cross-linked MAA-DEA microgels with and without PEGMA retained their polyampholytic properties in solution. By varying the composition of MAA and DEA in the microgel, it is possible to vary the isoelectric point of the colloidal particles. These new microgels are being explored for use in the delivery of DNA and proteins.  相似文献   

15.
Poly(N‐vinylcaprolactam) (PVCL) is well known for its thermoresponsive behavior in aqueous solutions. PVCL combines useful and important properties; it is biocompatible polymer with the phase transition in the region of physiological temperature (32–38 °C). This combination of properties allows consideration of PVCL as a material for design biomedical devices and use in drug delivery systems. In this work, PVCL based temperature‐sensitive crosslinked particles (microgels) were synthesized in a batch reactor to analyze the effect of the crosslinker, initiator, surfactant, temperature, and VCL concentration on polymerization process and final microgels characteristics. The mean particle diameters at different temperatures and the volume phase‐transition temperature of the final product were analyzed. To obtain information about the inner structure of microgel particles, semicontinuous polymerizations were carried out and the evolution of the hydrodynamic average particle diameters at different temperatures of the microgel synthesized was investigated. In the case of microgel particles obtained in a batch reactor the size and the swelling‐de‐swelling behavior as a function of the temperature of the medium can be tuned by modulating the reaction variables. When the microgel particles were synthesized in a semibatch reactor different swelling‐de‐swelling behaviors were observed depending on particles inner structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2510–2524, 2008  相似文献   

16.
In situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels were prepared by precipitation polymerization in the presence of various amounts of N,N′-methlenebisacrylamide as a crosslinker. The diameters of microgels were in the range of 200–300 nm with narrow distributions as determined by photo correlation spectroscopy. The equilibrium swelling ratio and thermosensitive properties of the microgels increased with decreasing crosslinker content. The volume phase transition of microgels dispersions at high concentrations were investigated by phase diagrams. The microgels dispersions experienced four phases when the temperature was increased: semitranslucent swollen gel, clear flowable suspension, cloud flowable suspension, and white shrunken gel. The related phase transition temperatures were influenced by crosslinker content and the concentration of the microgel dispersions. Herein, the gelation temperature was changed by more than 20 °C, shrinking temperatures were slightly changed by about 3 °C, and cloud point temperatures showed almost no change. The three phase transition temperatures of microgels dispersed in phosphate-buffered saline solutions were lower than that in water. As drug carriers, the release rates of bleomycin from bleomycin-loaded microgel dispersions exhibited diffusion control at human body temperature.  相似文献   

17.
Summary: pH-sensitive microgels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared by dispersion polymerization of 2-dimethylamino ethyl methacrylate in a mixed solvent of water/ethanol. 1HNMR, FTIR and SEM were used to confirm the chemical structure and morphological properties of the resulting microgels. Dynamic Light Scattering (DLS) was used to measure the hydrodynamic diameter of the particles. SEM micrographs showed that the microgel particles have a diameter of about 100–200 nm in dry state. Mean hydrodynamic diameter of the particles at their collapsed state at pH = 9.5 was found to be about 150 nm. DLS measurements at various pH values showed that the prepared microgels have a volume phase transition around pH = 8 at which the hydrodynamic diameter decreased from about 470 nm to around 150 nm corresponding to a 32 fold change in the mean volume of a microgel particle.  相似文献   

18.
Microgel nanoparticles were synthesized in aqueous solutions of neutral polymer hydroxypropylcellulose (HPC) through the self-association of amphiphilic HPC molecules and the subsequent cross linking at room temperature. Dynamic Light Scattering was used to study the transport properties of HPC microgels below and above the volume phase transition. Highly nonexponential, multimodal microgel spectra were observed and successfully analyzed by spectral time moment analysis. This article expands earlier results and focuses on the effect of the heating rate on microgel deswelling. During the fast heating two identified microgel modes with apparent hydrodynamic radii (RH) of 25–30 nm and 400–650 nm collapse into one mode with RH = 100–150 nm. This indicates the shrinkage of microgel size distribution and an apparent decrease in the radius of larger microgels. During the slow heating, however, both microgel-identified modes remain present above Tc. Although equally represented below the transition, the dominance of larger microgels' mode increases almost two fold with rising temperature above 40°C. Moreover, RH for this mode increases from 250–300 nm to about 800–850 nm with a multi-step temperature change from 40 to 42.5°C, indicating the growth (and not shrinkage) of microgels. The second mode is represented by the temperature independent RH, but its contribution goes down from about 50% to less than 10%. © 2008Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2792–2802, 2008  相似文献   

19.
Two strategies for the design of thermosensitive coatings based on poly‐N‐isopropyl acrylamide (PNIPAM) derivatives are presented: 1) polyelectrolyte multilayers containing a diblock copolymer with a large PNIPAM block and 2) adsorption of PNIPAM microgels. The multilayers show only a small but irreversible response to the increase of outer temperature due to the strong interdigitation between the charged part and the temperature‐sensitive block, while the adsorbed microgels show a pronounced and reversible response. It will be shown that the microgel number density can be easily controlled at the substrate. The swelling and shrinking of two extremes in density are characterized: densely packed microgels, which are considered as a film, and individual microgels, which are able to swell and shrink also lateral to the surface.  相似文献   

20.
Graphical Abstract: A doubly responsive microgel with core shell shape was prepared by seed polymerization. The electrical properties were characterized. The latex stability was evaluated and discussed according to the colloid theory.

A core-shell microgel of poly(N-isopropylacylamide-co-methacrylic acid) was prepared by seeded polymerization. Dynamic light scattering measurements indicated that the microgel had a narrow size distribution. Zeta potential decreased gradually with increasing ionic strength, and when salinity reached a certain concentration the surface charge was almost screened out. Further addition of salt led to the shrinking and final flocculation. For increasing temperature, the zeta potential under higher ionic strength exhibited an abrupt change for trending to zero. Total interaction energy between particles was calculated with colloid theory. Meanwhile, thermal stability was evaluated and interpreted the experimental phenomenons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号