首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
AuNPs/PNIPAM复合颗粒的制备及其温敏性质   总被引:1,自引:0,他引:1  
将金纳米颗粒(AuNPs)组装到聚N-异丙基丙烯酰胺(PNIPAM)水凝胶微球表面制备出AuNPs/PNIPAM复合颗粒. 将PNIPAM 凝胶的温敏特性与AuNPs的光学性质结合, 通过改变温度调节AuNPs的局部表面等离子共振(LSPR)吸收峰位置. 研究结果表明, 温度升高使AuNPs的LSPR吸收峰发生红移, 并且这种效应是可逆的. 同时发现, AuNPs的光学性质还可以作为表征PNIPAM水凝胶微球温敏行为的一种手段. 利用透射电镜、紫外-可见光谱仪及动态光散射仪对AuNPs/PNIPAM复合颗粒的形貌、光学性质、粒径变化等进行了分析.  相似文献   

2.
Thermoresponsive nanoparticles (NPs) represent an important hybrid material comprising functional NPs with temperature‐sensitive polymer ligands. Strikingly, significant discrepancies in optical and catalytic properties of thermoresponsive noble‐metal NPs have been reported, and have yet to be unraveled. Reported herein is the crafting of Au NPs, intimately and permanently ligated by thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM), in situ using a starlike block copolymer nanoreactor as model system to resolve the paradox noted above. As temperature rises, plasmonic absorption of PNIPAM‐capped Au NPs red‐shifts with increased intensity in the absence of free linear PNIPAM, whereas a greater red‐shift with decreased intensity occurs in the presence of deliberately introduced linear PNIPAM. Remarkably, the absence or addition of free linear PNIPAM also accounts for non‐monotonic or switchable on/off catalytic performance, respectively, of PNIPAM‐capped Au NPs.  相似文献   

3.
Poly(styrene‐bN‐isopropylacrylamide) (PSt‐b‐PNIPAM) with dithiobenzoate terminal group was synthesized by reversible addition‐fragmentation‐transfer polymerization. The dithiobenzoate terminal group was converted into thiol terminal group with NaBH4, resulting thiol‐terminated PSt‐b‐PNIPAM‐SH. After PSt‐b‐PNIPAM‐SH assembled into core‐shell micelles in aqueous solution, gold nanoparticles were in situ surface‐linked onto the micelles through the reduction of gold precursor anions with NaBH4. Thus, temperature responsive core/shell micelles of PSt‐b‐PNIPAM surface‐linked with gold nanoparticles (PSt‐b‐PNIPAM‐Au micelles) were obtained. Transmission Electron Microscopy revealed the successful linkage of gold nanoparticles and the dependence of the number of gold nanoparticles per micelle on the molar ratio of HAuCl4 to thiol group of PSt‐b‐PNIPAM. Dynamic Light Scattering analysis demonstrated thermo‐responsive behavior of PSt‐b‐PNIPAM‐Au micelles. Changing the temperature of PSt‐b‐PNIPAM‐Au micelles led to the shrinkage of PNIPAM shell and allowed to tune the distance between gold nanoparticles. Ultraviolet–visible (UV–vis) spectroscopy clearly showed the reversible modulation of UV–vis absorbance of PSt‐b‐PNIPAM‐Au micelles upon heating and cooling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5156–5163, 2007  相似文献   

4.
Two strategies for the design of thermosensitive coatings based on poly‐N‐isopropyl acrylamide (PNIPAM) derivatives are presented: 1) polyelectrolyte multilayers containing a diblock copolymer with a large PNIPAM block and 2) adsorption of PNIPAM microgels. The multilayers show only a small but irreversible response to the increase of outer temperature due to the strong interdigitation between the charged part and the temperature‐sensitive block, while the adsorbed microgels show a pronounced and reversible response. It will be shown that the microgel number density can be easily controlled at the substrate. The swelling and shrinking of two extremes in density are characterized: densely packed microgels, which are considered as a film, and individual microgels, which are able to swell and shrink also lateral to the surface.  相似文献   

5.
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) was used to prepare a POSS‐containing reversible addition‐fragmentation transfer (RAFT) agent. The POSS‐containing RAFT agent was used in the RAFT polymerization of N‐isopropylacrylamide (NIPAM) to produce tadpole‐shaped organic/inorganic hybrid Poly(N‐isopropylacrylamide) (PNIPAM). The results show that the POSS‐containing RAFT agent was an effective chain transfer agent in the RAFT polymerization of NIPAM, and the polymerization kinetics were found to be pseudo‐first‐order behavior. The thermal properties of the organic/inorganic hybrid PNIPAM were also characterized by differential scanning calorimetry. The glass transition temperature (Tg) of the tadpole‐shaped inorganic/organic hybrid PNIPAM was enhanced by POSS molecule. The self‐assembly behavior of the tadpole‐shaped inorganic/organic hybrid PNIPAM was investigated by atomic force microscopy and dynamic light scattering. The results show the core‐shell nanostructured micelles with a uniform diameter. The diameter of the micelle increases with the molecular weight of the hybrid PNIPAM. Surprisingly, the micelle of the tadpole‐shaped inorganic/organic hybrid PNIPAM with low molecular weight has a much bigger and more compact core than that with high molecular weight. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7049–7061, 2008  相似文献   

6.
Thermoresponsive colloidal microgels were prepared by polymerization of N‐isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N‐methylenebisacrylamide, in water with varying concentrations (<CMC) of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N‐isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering, and electrophoretic mobility measurements were used to characterize the aqueous microgels. As expected, increasing SDS concentration in the polymerization batch decreased the hydrodynamic size of an aqueous microgel. Structures with high mobilities at temperatures above the LCST of PNIPAM were observed in the microgels prepared with small amount of SDS, as indicated by the relaxation times of different PNIPAM protons. It was concluded that the high mobility at high temperatures is in connection to a mobile surface layer with polyelectrolyte nature and with high local LCST. High SDS concentration in the synthesis was observed to prevent the formation of permanent, solid PNIPAM particles. The results from different characterization methods indicated that PNIPAM microgels prepared in high SDS concentrations appear to be more homogeneously structured than their correspondences prepared in low SDS concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3305–3314, 2006  相似文献   

7.
Gold nanoparticles (AuNPs) were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with hydrazine monohydrate. The AuNPs were immediately treated with cysteamine to obtain amine‐functionalized nanoparticles (Au‐NH2). The reaction of Au‐NH2 with epichlorohydrin and subsequent treatment with sodium hydroxide gave epoxidized AuNPs (Au‐EP). Then, thiol‐capped AuNPs (Au‐SH) were synthesized by reaction of Au‐EP with cysteamine. A ‘grafting to’ approach was utilized to graft bromine‐terminated poly(N ,N ′‐dimethylaminoethyl methacrylate), synthesized via aqueous atom transfer radical polymerization, with various molecular weights (6280, 25 800, 64 200 and 87 600 g mol−1) onto Au‐SH to obtain Au‐P1, Au‐P2, Au‐P3 and Au‐P4 samples, respectively. All samples were exposed to temperature and pH variations, and Z‐average diameter was monitored using dynamic light scattering. According to the results, polymer‐grafted nanoparticles collapsed at lower temperatures with increasing solution pH for all molecular weight ranges due to deprotonation of tertiary amine groups. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, a high degree of agglomeration was observed for Au‐P4 nanoparticles in alkaline media on increasing the temperature to 55 and 65 °C.  相似文献   

8.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


9.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

10.
Adopting inorganic clay (hectorite) and MBA as physical and chemical cross‐linking agents, respectively, PNIPAM microgels were synthesized by SFEP. The chemical structure and morphology of the microgels were confirmed by FTIR, WXRD, and SEM. The temperature‐sensitivity of the microgels was investigated by DLS and UV spectrophotometers. The results inferred that clay platelets dispersed in an aqueous medium were fully exfoliated and could act as a kind of multifunctional cross‐linking agent and significantly reduced the hydrodynamic diameters of the microgels. In fact, the hydrodynamic diameters of the PNIPAM microgels with clay as cross‐linker ranged from 154 to 322 nm which was much smaller than that using MBA as chemical cross‐linker, the later was in the range of 284–808 nm on heating from 5 to 50 °C.

  相似文献   


11.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

12.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

13.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

14.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

15.
A highly versatile approach to fabricate functional gold nanoparticle (AuNP)‐polymer hybrids is demonstrated by employing sulfonated block copolymers. The 3–5 nm sized ionic domain of the sulfonated poly(styrene‐block‐methylbutylene) (SnMBm) copolymers can be utilized as a nanoreactor where the Au ions can be selectively sequestered and reduced to AuNPs using a simple photochemical method. The size of the AuNPs can be adjusted in fine‐steps from 2.0 ± 0.3 to 3.9 ± 0.5 nm by changing the sulfonation levels of the SnMBm copolymers. Remarkably, significantly improved methanol oxidation properties are achieved with the hybrid materials owing to the ion conducting–SO3H groups and the interconnected network of AuNPs confined within the self‐assembled microstructures, which provides electronic conductivity.  相似文献   

16.
A series of novel temperature and pH responsive block copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(L ‐lysine) (PLL) were synthesized. The effect of pH and the length of PLL on the lower critical solution temperature (LCST) of PNIPAM, and the self‐assembly of these PLL‐based copolymers induced by temperature and pH changes were investigated by the cloud point method, dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). These PNIPAM‐b‐PLL copolymers can self‐assemble into micelle‐like aggregates with PNIPAM as the hydrophobic block at acidic pH and high temperatures; and at alkaline pH and low temperatures, they can self‐assemble into particles with PLL as the hydrophobic block. The copolymers may have potential applications in biotechnological and biomedical areas as drug release carriers.

  相似文献   


17.
CRISPR/Cas9 system is a powerful toolbox for gene editing. However, the low delivery efficiency is still a big hurdle impeding its applications. Herein, we report a strategy to deliver Cas9‐sgPlk‐1 plasmids (CP) by a multifunctional vehicle for tumor therapy. We condensed CPs on TAT peptide‐modified Au nanoparticles (AuNPs/CP, ACP) via electrostatic interactions, and coated lipids (DOTAP, DOPE, cholesterol, PEG2000‐DSPE) on the ACP to form lipid‐encapsulated, AuNPs‐condensed CP (LACP). LACP can enter tumor cells and release CP into the cytosol by laser‐triggered thermo‐effects of the AuNPs; the CP can enter nuclei by TAT guidance, enabling effective knock‐outs of target gene (Plk‐1) of tumor (melanoma) and inhibition of the tumor both in vitro and in vivo. This AuNPs‐condensed, lipid‐encapsulated, and laser‐controlled delivery system provides a versatile method for high efficiency CRISPR/Cas9 delivery and targeted gene editing for treatment of a wide spectrum of diseases.  相似文献   

18.
To take advantage of the respective character of methylcellulose (MC), poly(vinyl alcohol) (PVA), and alginate, novel physically cross‐linked methylcellulose/Fe‐alginate‐g‐PVA/PVA (MC/Fe‐Alg‐g‐PVA/PVA) microgels were prepared by emulsification/thermal gelation/freezing–thawing/ionic cross‐linking technique. Subsequently, some ferrous ions bound in the microgels were transformed into magnetite via in situ self oxidation. A model enzyme α‐amylase was immobilized into microgels by direct adsorption. The release behavior of α‐amylase indicated that the obtained complex microgels were magnetic‐, temperature‐, and pH‐ triple sensitive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We report on the synthesis of an H‐shaped polymer bonding β‐cyclodextrin (β‐CD) at branch points and influences of attached β‐CD on physical properties. First, a poly(ethylene glycol)(PEG)‐based functional macroinitiator bearing two azidos and four chlorines at chain‐ends (PEG‐2N3(‐4Cl)) was prepared via terminal modification reactions. Then, PEG‐2N3(‐4Cl) was applied to initiate the atom transfer radical polymerization of N‐isopropylacrylamide, leading to the synthesis of an H‐shaped block polymer with PEG as the central chain and poly(N‐isopropylacrylamide) (PNIPAM) as side‐arms (PEG‐2N3(‐4PNIPAM)). Azido groups were at the branch points of the polymer. Finally, the click reaction between PEG‐2N3(‐4PNIPAM) and alkynyl monosubstituted β‐cyclodextrin (β‐CD) afforded another H‐shaped polymer with two β‐CDs bonding at the polymer branch points (PEG‐2CD(‐4PNIPAM)). The glass transition temperature (Tg) and lower critical solution temperature (LCST) of the H‐shaped polymer increased after the attachment of β‐CD. The self‐assembly and thermal responsive behaviors, as well as the encapsulation behaviors of PEG‐2CD(‐4PNIPAM) were also altered. When temperature was below the LCSTs, PEG‐2N3(‐2PNIPAM) dissolved in water molecularly, whereas PEG‐2CD(‐4PNIPAM) could self‐assemble into nano‐sized micelles. After the LCST transitions, PEG‐2N3(‐4PNIPAM) aggregated into micron‐sized unstable particles, whereas PEG‐2CD(‐4PNIPAM) transformed into PNIPAM‐cored nanomicelles. Besides, PEG‐2CD(‐4PNIPAM) can encapsulate doxorubicin below its LCST due to the formation of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号