首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of experimental and numerical investigations of the problem of turbulent natural convection in a converging-plate vertical channel. The channel has two isothermally heated inclined walls and two adiabatic vertical side walls. The parameters involved in this study are the channel geometry represented by the channel width at exit, the inclination of the heated walls and the temperature difference between the heated walls and the ambient. The investigation covered modified Rayleigh numbers up to 108 in the computational study and up to 9.3 × 106 in the experimental work. The experimental measurements focused on the velocity field and were carried out using a PIV system and included measurements of the mean velocity profiles as well as the root-mean-square velocity and shear stress profiles. The experiments were conducted for an inclination angle of 30°, a gap width of 10 mm and two temperature differences (∆T=25.4°C and 49.8°C). The velocity profiles in the lower part of the channel indicated the presence of two distinct layers. The first layer is adjacent to the heated plate and driven by buoyancy forces while the second layer extends from the point of maximum velocity to the channel center plane and driven mainly by shear forces. The velocity profile at the upper portion of the channel has shown the merging of the two boundary layers growing over the two heated walls. The measured values of the Reynolds shear stress and root mean square of the horizontal and vertical velocity fluctuation components have reached their maximum near the wall while having smaller values in the core region. The computational results have shown that the average Nusselt number increases approximately linearly with the increase of the modified Rayleigh number when plotted on log–log scale. The variation of the local Nusselt number indicated infinite values at the channel inlet (leading edge effect) and high values at the channel exit (trailing edge effect). For a fixed value of the top channel opening, the increase of the inclination angle tended to reduce flow velocity at the inlet section while changing the flow structure near the heated plates in such a way to create boundary-layer type flow. The maximum value of the average Nusselt number occurs when θ = 0 and decreases with the increase of the inclination angle. On the other hand, the increase of the channel width at exit for the same inclination angle caused a monotonic increase in the flow velocity at the channel inlet.  相似文献   

2.
In this paper, direct numerical simulations have been performed to study the effects of Coriolis force on the turbulent flow field confined within a square duct subjected to spanwise system rotations at high rotation numbers. In response to the system rotation, secondary flows appear as large streamwise counter-rotating vortices, which interact intensely with the four boundary layers and have a significant impact on flow statistics, velocity spectra and coherent structures. It is observed that at sufficiently high rotation numbers, a Taylor–Proudman region appears and complete laminarization is almost reached near the top and side walls. The influence of large organized secondary flows on the production rate and re-distribution of turbulent kinetic energy has been investigated through a spectral analysis. It is observed that the Coriolis force dominates the transport of Reynolds stresses and turbulent kinetic energy, and forces the spectra of streamwise and vertical velocities to synchronize within a wide range of scales.  相似文献   

3.
4.
Experiments have been undertaken to investigate the natural convection of air in a tall differentially heated rectangular cavity (2.18 m high by 0.076 m wide by 0.52 m in depth). They were performed with temperature differentials between the vertical plates of 19.6°C and 39.9°C, giving Rayleigh numbers based on the width of 0.86×106 and 1.43×106. Under these conditions the flow in the core of the cavity is fully turbulent and property variations with temperature are comparatively small. A previously used experimental rig has been modified, by fitting partially conducting top and bottom walls and outer guard channels, to provide boundary conditions which avoid the inadequately defined sharp changes in temperature gradient and other problems associated with insufficient insulation on nominally adiabatic walls. Mean and turbulent temperature and velocity variations within the cavity have been measured, together with heat fluxes and turbulent shear stresses. The temperature and flow fields were found to be closely two-dimensional, except close to the front and back walls, and anti-symmetric across the diagonal of the cavity. The partially conducting roof and floor provide locally unstable thermal stratification in the wall jet flows there, which enhances the turbulence as the flow moves towards the temperature controlled plates. The results provide a greatly improved benchmark for the testing of turbulence models in this low turbulence Reynolds number flow.  相似文献   

5.
Turbulent flow of an incompressible fluid in a plane channel with parallel walls is considered. The three-dimensional time-dependent Navier-Stokes equations are solved numerically using the spectral finite-difference method. An artificial force which completely suppresses lateral oscillations of the velocity is introduced in the near-wall zone (10 % of the channel half-width in the neighborhood of each wall). Thus, the three-dimensional flow zone, in which turbulent oscillations can develop, is separated from the wall by a fluid layer. It is found that the elimination of three-dimensionality in the neighborhood of the walls leads to a significant reduction in the drag. However, complete laminarization does not occur. The flow in the stream core remains turbulent and can be interpreted as a turbulent flow in a channel with walls located on the boundary of the two-dimensional layer and traveling at the local mean-flow velocity. The oscillations developing inside the two-dimensional layer, which have significant amplitude, distort the flow only in the adjacent zone. Beyond this zone the distributions of the mean characteristics and the structure of instantaneous fields completely correspond to ordinary turbulent flow in a channel with rigid walls. The results obtained confirm the hypothesis of the unimportance of the no-slip boundary conditions for the fluctuating velocity component in the mechanism of onset and self-maintenance of turbulence in wall flows.  相似文献   

6.
Turbulent buoyancy-driven flow in a rectangular cavity with two differentially heated opposite walls is investigated numerically by means of large-eddy simulation (LES). Different dynamic global-coefficient subgrid-scale models for weakly compressible flows are applied to simulate the natural convective flow. It is shown that transition of the boundary layer is delayed in cases where the model coefficients are fixed or changing dynamically according to the Germano identity. On the contrary, in the ‘global equilibrium’ approach, the result shows an earlier change in flow regime due to lower subgrid-scale viscosity. Further, it is also demonstrated that three-dimensional effects of the natural convective flow may be significant due to the presence of adiabatic side walls.  相似文献   

7.
In this paper, a direct numerical simulation of a fully developed turbulent flow and heat transfer are studied in a square duct with an imposed temperature difference between the vertical walls and the perfectly insulated horizontal walls. The natural convection is considered on the cross section in the duct. The numerical scheme employs a time-splitting method to integrate the three dimensional incompressible Navier-Stokes equation. The unsteady flow field was simulated at a Reynolds number of 400 based on the Mean friction velocity and the hydraulic diameter (Re m = 6200), while the Prandtl number (Pr) is assumed 0.71. Four different Grashof numbers (Gr = 104, 105, 106 and 107) are considered. The results show that the secondary flow and turbulent characteristics are not affected obviously at lower Grashof number (Gr ≤ 105) cases, while for the higher Grashof number cases, natural convection has an important effect, but the mean flow and mean temperature at the cross section are also affected strongly by Reynolds stresses. Compared with the laminar heat transfer at the same Grashof number, the intensity of the combined heat transfer is somewhat decreased.  相似文献   

8.
The transient natural convection of a fluid with Prandtl number of order 200 in a two-dimensional square cavity has been numerically studied. One of the vertical walls of the cavity is kept at a constant (ambient) temperature and a constant heat flux is applied on the opposite wall. The other walls are adiabatic. Initially, a boundary layer is formed near the heated wall; subsequently, a large vortical structure is generated, together with an upper intrusion layer. As time progresses, the average temperature in the cavity increases, and a descending boundary layer is formed near the constant temperature wall. During the transition to the steady-state regime, a thermal stratification pattern is formed. The results are compared with the scale analysis presented by Patterson and Imberger (1980).  相似文献   

9.
Direct numerical simulation(DNS) of spatially developing round turbulent jet flow with Reynolds number 4,700 was carried out. Over 20 million grid points were used in this simulation. Fully compressible three-dimensional Navier–Stokes equations were solved. High order explicit spatial difference schemes and Runge–Kutta time integration scheme were used to calculate derivatives and time marching, respectively. Non-reflecting boundary conditions and exit zone techniques were adopted. Some refined computational grids were used in order to capture the smallest turbulent structures near the centerline of the jet. Low level disturbance were imposed on the jet inflow velocity to trigger the developing of turbulence. Turbulent statistics such as mean velocity, Reynolds stresses, third order velocity moments were obtained and compared with experimental data. One-dimensional velocity autospectra was also calculated. The inertial region where the spectra decays according to the k − 5/3 was observed. The quantitative profiles of mean velocity and all of the third order velocity moments which were difficult to measure via experimental techniques were presented here in detail. The jet flow was proven to be close to fully self-similar around 19 jet diameters downstream of jet exit. The statistic data and revealed flow feature obtained in this paper can provide valuable reference for round turbulent jet research.  相似文献   

10.
Turbulent natural convection in an asymmetrically heated vertical parallel-plate channel has been studied experimentally and numerically using LDA and CFD. Simultaneous velocity and temperature measurements across the channel at different elevations have been carried out. Three different Ra(b/h) values of 1.91 × 107, 2.74 × 107 and 3.19 × 107 are considered with the channel aspect ratio of b/h = 1/20. Experimental and numerical data are presented in the form of streamwise direction heated wall surface temperature, mean velocity, mean temperature, Reynolds shear stress and turbulent kinetic energy profiles along the channel for one case. These profiles exhibit the flow field development along the channel emphatically. The numerical technique used predicts temperature field fairly well, considerably over-estimating velocity field in the core region.  相似文献   

11.
In a recent publication Bühler (Heat Mass Transfer 39:631–638, 2003) reported new results for conduction regime flow between vertical differentially-heated walls that provide a continuum of solutions between capped and open ends. In this paper we extend Bühler’s work to realize a continuum of solutions of convection regime flow using empirical results for the vertical temperature gradient that develops in tall aspect ratio geometries. The mass flux is determined analytically for this three-parameter family of solutions. Identical viscous and thermal boundary layers exist at the opposing walls when the cavity is capped. However, as the flow evolves to one with open ends, there is an intensification (attenuation) of the boundary layers near the hot (cold) walls. In the limit corresponding to an open-ended cavity, the boundary layer at the cold wall vanishes altogether.  相似文献   

12.
A high-resolution, three-dimensional finite-difference numerical study of natural convection flows of a viscous fluid in a differentially heated cubical box is reported. The vertical sidewalls of the enclosure are maintained at constant temperatures of different values. The other vertical walls (the end walls) are thermally insulated. For the horizontal walls, two kinds of thermal boundary conditions are specified: adiabatic and perfectly conducting. Computations have been performed for an air-filled cavity for Rayleigh numbers of 105 and 106. The specific effects of the horizontal thermal boundary conditions on the flow structure are examined in detail. In the case of conducting walls, heat transfer through the horizontal walls enhances the convective flow activities. The numerically predicted velocity and temperature profiles in the symmetry planes are consistent with previous experimental measurements and computations.  相似文献   

13.
Turbulent flow through a duct of square cross-section gives rise to off-axis secondary flows, which are known to transfer momentum between fluid layers thereby flattening the velocity profile. The aim of this study is to investigate the role of the secondary flows in the transport and dispersion of particles suspended in a turbulent square duct flow. We have numerically simulated a flow through a square duct having a Reynolds number of Reτ = 300 through discretization of the Navier–Stokes equations, and followed the trajectories of a large number of passive tracers and finite-inertia particles under a one-way coupling assumption. Snapshots of particle locations and statistics of single-particle and particle pair dispersion were analyzed. It was found that lateral mixing is enhanced for passive tracers and low-inertia particles due to the lateral advective transport that is absent in straight pipe and channels flows. Higher inertia particles accumulate close to the wall, and thus tend to mix more efficiently in the streamwise direction since a large number of the particles spend more time in a region where the mean fluid velocity is small compared to the bulk. Passive tracers tend to remain within the secondary swirling flows, circulating between the core and boundary of the duct.  相似文献   

14.
In this paper, a novel thermal filter-matrix lattice Boltzmann model based on large eddy simulation (LES) is proposed for simulating turbulent natural convection. In this study, the Vreman subgrid-scale eddy-viscosity model is introduced into the present framework of LES to accurately predict the flow in near-wall region. Two dimensional numerical simulations of natural convection in a square cavity were performed at high Rayleigh number varying from 107 to 1010 with a fixed Prandtl number of Pr = 0.71. The influences of the higher-order terms upon the present results at high Rayleigh numbers are examined, taking Ra = 107 and 108 as the example, revealing that the proper minimization of the higher-order terms can improve numerical accuracy of present model for high Rayleigh convective flow. For the turbulent convective flow, the time-averaged quantities in the median lines are presented and compared against those available results from previous studies. The general structure of turbulent boundary layers is well predicted. All numerical results exhibit good agreement with the benchmark solutions available in the previous literatures.  相似文献   

15.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


16.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

17.
Air flow field around a surface-mounted hemisphere of a fixed height for two different turbulent boundary layers (thin and thick) are investigated experimentally and numerically. Flow measurements are performed in a wind tunnel using hot-wire anemometer and streamwise component of velocity fluctuation are calculated using a special developed program of the hardware system. Mean surface pressure coefficients and velocity field for the same hemisphere are determined by the numerical simulation. Turbulent flow field and intensity are measured for two types of boundary layers and compared at various sections in both streamwise and spanwise directions. Numerical scheme based on finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Studies are performed for Reynolds number, ReH = 32,000. Based on the numerical simulation using RNG kε turbulence model, flow pathlines, separation region and recirculation area are determined for the two types of turbulent boundary layer flows and complex flow field and recirculation regions are identified and presented graphically.  相似文献   

18.
This paper describes a numerical method for the study of combined natural convection and radiation in a rectangular, two-dimensional cavity containing a non-participating (i.e. transparent) fluid. One wall of the cavity is isothermal, being heated either by solar radiation or independently. The opposite wall is partially transparent, permitting radiation exchanges between the cavity and its surroundings and/or the Sun; that wall also exchanges heat by convection from its external surface to the surroundings. The other two walls are adiabatic: convection and radiation there are balanced, so that there is no heat transfer through those walls. The equations of motion and energy are solved by finite difference methods. Coupled to these equations are the radiative flux boundary conditions which are used to determine the temperature distribution along the non-isothermal walls. A two-band radiation model has been employed. Results are presented for a square cavity with a vertical hot wall at 150 °C, the ambient at 20 °C and 104 ? Ra ? 3 × 105, in the absence of direct insolation. The effects on the flow and heat transfer in the cavity of radiation and external convection have been examined. More extensive results will be presented in subsequent papers.  相似文献   

19.
The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity’s side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity.  相似文献   

20.
Flow and heat transfer characteristics over flat, concave and convex surfaces have been investigated in a low speed wind tunnel in the presence of adverse and favourable pressure gradients (k), for a range of –3.6 × 10–6 ≤ k ≤ +3.6 × 10–6. The laminar near zero pressure gradient flow, with an initial momentum thickness Reynolds number of 200, showed that concave wall boundary layer was thinner and heat transfer coefficients were almost 2 fold of flat plate values. Whereas for the same flow condition, thicker boundary layer and 35% less heat transfer coefficients of the convex wall were recorded with an earlier transition. Accelerating laminar flows caused also thinner boundary layers and an augmentation in heat transfer values by 28%, 35% and 16% for the flat, concave and convex walls at k = 3.6 × 10–6. On the other hand decelerating laminar flows increased the boundary layer thickness and reduced Stanton numbers by 31%, 26% and 22% on the flat surface, concave and convex walls respectively. Turbulent flow measurements at k = 0, with an initial momentum thickness Reynolds number of 1100, resulted in 30% higher and 25% lower Stanton numbers on concave and convex walls, comparing to flat plate values. Moreover the accelerating turbulent flow of k = 0.6 × 10–6 brought about 29%, 30% and 24% higher Stanton numbers for the flat, concave and convex walls and the decelerating turbulent flow of k = –0.6 × 10–6 caused St to decrease up to 27%, 25% and 29% for the same surfaces respectively comparing to zero pressure gradient values. An empirical equation was also developed and successfully applied, for the estimation of Stanton number under the influence of pressure gradients, with an accuracy of better than 4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号