首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gas-phase structures of alkali-metal cation complexes of threonine (Thr) are examined using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser in conjunction with quantum chemical calculations. Spectra of Li+(Thr) and Na+(Thr) are similar and relatively simple, whereas K+(Thr), Rb+(Thr), and Cs+(Thr) include distinctive new IR bands. Measured IRMPD spectra are compared to spectra calculated at a B3LYP/6-311+G(d,p) level to identify the structures present in the experimental studies. For the smaller metal cations, the spectra match those predicted for charge-solvated structures in which the ligand exhibits tridentate coordination, M1[N,CO,OH], binding to the amide and carbonyl groups of the amino acid backbone and to the hydroxyl group of the side chain. K+(Thr), Rb+(Thr), and Cs+(Thr) exhibit evidence of the charge-solvated complex, M3[COOH], in which the metal cation binds to the carboxylic acid group. Evidence for a small population of the zwitterionic analogue of this structure, ZW[CO2-], is also present, particularly for the Cs+ complex. Calculations indicate that the relative stability of the M3[COOH] structure is very strongly dependent on the size of the metal cation, consistent with the range of conformations observed experimentally. The present results are similar to those obtained previously for the analogous M+(Ser) complexes, although there are subtle distinctions that are discussed.  相似文献   

2.
Absolute bond dissociation energies of serine (Ser) and threonine (Thr) to alkali metal cations are determined experimentally by threshold collision-induced dissociation of M+AA complexes, where M+=Li+, Na+, and K+ and AA=Ser and Thr, with xenon in a guided ion beam tandem mass spectrometer. Experimental results show that the binding energies of both amino acids to the alkali metal cations are very similar to one another and follow the order of Li+>Na+>K+. Quantum chemical calculations at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level show good agreement with the experimental bond energies. Theoretical calculations show that all M+AA complexes have charge-solvated structures (nonzwitterionic) with [CO, N, O] tridentate coordination.  相似文献   

3.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

4.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations, Na+, K+, Rb+, and Cs+, to triethyl phosphate (TEP). The primary and lowest energy dissociation pathway in all cases is the endothermic loss of the neutral TEP ligand. Theoretical electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G* level of theory are used to determine the structures, molecular parameters, and theoretical estimates for the BDEs of these complexes. For the complexes to Rb+ and Cs+, theoretical calculations were performed using hybrid basis sets in which the effective core potentials and valence basis sets of Hay and Wadt were used to describe the alkali metal cation, while the standard basis sets were used for all other atoms. The agreement between theory and experiment is excellent for the complexes to Na+ and K+ and is somewhat less satisfactory for the complexes to the heavier alkali metal cations, Rb+ and Cs+, where effective core potentials were used to describe the cation. The trends in the binding energies are examined. The binding of alkali metal cations to triethyl phosphate is compared with that to trimethylphosphate.  相似文献   

5.
Absolute 18-crown-6 (18C6) affinities of five amino acids (AAs) are determined using guided ion beam tandem mass spectrometry techniques. The AAs examined in this work include glycine (Gly), alanine (Ala), lysine (Lys), histidine (His), and arginine (Arg). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the AAs as well as the proton bound complexes comprised of these species, (AA)H(+)(18C6). The proton affinities (PAs) of Gly and Ala are lower than the PA of 18C6, whereas the PAs of Lys, His, and Arg exceed that of 18C6. Therefore, the collision-induced dissociation (CID) behavior of the (AA)H(+)(18C6) complexes differs markedly across these systems. CID of the complexes to Gly and Ala produces H(+)(18C6) as the dominant and lowest energy pathway. At elevated energies, H(+)(AA) was produced in competition with H(+)(18C6) as a result of the relatively favorable entropy change in the formation of H(+)(AA). In contrast, CID of the complexes to the protonated basic AAs results in the formation of H(+)(AA) as the only direct CID product. H(+)(18C6) was not observed, even at elevated energies, as a result of unfavorable enthalpy and entropy change associated with its formation. Excellent agreement between the measured and calculated (AA)H(+)-18C6 bond dissociation energies (BDEs) is found with M06 theory for all complexes except (His)H(+)(18C6), where theory overestimates the strength of binding. In contrast, B3LYP theory significantly underestimates the (AA)H(+)-18C6 BDEs in all cases. Among the basic AAs, Lys exhibits the highest binding affinity for 18C6, suggesting that the side chains of Lys residues are the preferred binding site for 18C6 complexation in peptides and proteins. Gly and Ala exhibit greater 18C6 binding affinities than Lys, suggesting that the N-terminal amino group provides another favorable binding site for 18C6. Trends in the 18C6 binding affinities among the five AAs examined here exhibit an inverse correlation with the polarizability and proton affinity of the AA. Therefore, the ability of the N-terminal amino group to compete for 18C6 complexation is best for Gly and should become increasing less favorable as the size of the side chain substituent increases.  相似文献   

6.
Lithium cation complexes with serine (Ser) and threonine (Thr) are collisionally activated with xenon in a guided ion beam tandem mass spectrometer and are observed to exhibit a variety of decomposition pathways in addition to a loss of the intact ligand. Prominent pathways include a loss of H2O, CO2, and aldehydes (XCHO where X=H for Ser and CH3 for Thr). Quantum chemical calculations at the B3LYP/6-311+G(d,p) level are used to explore the reaction mechanisms for these processes in detail. Complete potential energy surfaces for all three processes are elucidated, including all intermediates and transition states. Theoretical molecular parameters for the rate-limiting transition states are then used to analyze the threshold energies in the experimental data, providing experimental measurements of the energies of these transition states. These experimental energies are compared with single-point energies calculated at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level. Good agreement between experiment and theory (especially MP2(full)) suggests that the reaction mechanisms have been reasonably elucidated.  相似文献   

7.
The binding of Na (+) to arabinose (Ara), xylose (Xyl), glucose (Glc), and galactose (Gal) is examined in detail by studying the collision-induced dissociation (CID) of the four sodiated monosaccharide complexes with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Analysis of the energy-dependent CID cross-sections provides 0 K sodium cation affinities for experimental complexes after accounting for unimolecular decay rates, internal energy of reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations for a number of geometric conformations of each Na (+)(L) complex with a comprehensive analysis of the alpha and beta anomeric forms are determined at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both experimental work and quantum chemical calculations allows for determination of the bond energy for both the alpha and beta forms of each monosaccharide studied here. An understanding of the energetic contributions of individual structural characteristics as well as the energetic trends in binding among the monosaccharides is developed. Structural characteristics that affect the energetics of binding involve multidentate sodium cation coordination, ring sterics, and hydrogen bonding schemes. The overall trend in sodium binding affinities for the eight ligands follows beta-Ara < alpha-Ara < beta-Xyl < beta-Glc < alpha-Glc < alpha;-Xyl < alpha-Gal < beta-Gal.  相似文献   

8.
The binding of K(+) to aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), and glutamine (Gln) is examined in detail by studying the collision-induced dissociation (CID) of the four potassium cation-bound amino acid complexes with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Formed by electrospray ionization, these complexes have energy-dependent CID cross sections that are analyzed to provide 0 K bond energies after accounting for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations for a number of geometric conformations of each K(+)(L) complex are determined at the B3LYP/6-311+G(d,p) level with single-point energies calculated at B3LYP, B3P86, and MP2(full) levels using a 6-311+G(2d,2p) basis set. Theoretical bond dissociation energies are in good agreement with the experimental values. This coordinated examination of both experimental work and quantum chemical calculations allows for a comprehensive understanding of the molecular interactions of K(+) with the Asx and Glx amino acids. K(+) binding affinities for the amide complexes are systematically stronger than those for the acid complexes by 9+/-1 kJ/mol, which is attributed to an inductive effect of the OH group in the carboxylic acid side chain. Additionally, the K(+) binding affinity for the longer-chain amino acids (Glx) is enhanced by 5+/-1 kJ/mol compared to the shorter-chain Asx because steric effects are reduced. Further, a detailed comparison between experimental and theoretical results reveals interesting differences in the binding of K(+) and Na(+) to these amino acids.  相似文献   

9.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

10.
Threshold collision-induced dissociation of M (+)( nMA) x with Xe is studied using guided ion beam mass spectrometry, where nMA = N-methylaniline and N, N-dimethylaniline and x = 1 and 2. M (+) includes the following alkali metal cations: Li (+), Na (+), K (+), Rb (+), and Cs (+). In all cases, the primary dissociation pathway corresponds to the endothermic loss of an intact nMA ligand. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) for ( nMA) x-1 M (+)-( nMA) after accounting for the effects of multiple ion-neutral collisions, the internal and kinetic energy distributions of the reactants, and the dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level of theory are used to determine the structures of these complexes, which are also used in single-point calculations at the MP2(full)/6-311+G(2d,2p) level to determine theoretical BDEs. The results of these studies are compared to previous studies of the analogous M (+)(aniline) x complexes to examine the effects of methylation of the amino group on the binding interactions. Comparisons are also made to a wide variety of cation-pi complexes previously studied to elucidate the contributions that ion-dipole, ion-induced-dipole, and ion-quadrupole interactions make to the overall binding.  相似文献   

11.
The binding interactions in complexes of Zn(+) with nitrogen donor ligands, (N-L) = pyridine (x = 1-4), 4,4'-dipyridyl (x = 1-3), 2,2'-dipyridyl (x = 1-2), and 1,10-phenanthroline (x = 1-2), are examined in detail. The bond dissociation energies (BDEs) for loss of an intact ligand from the Zn(+)(N-L)(x) complexes are reported. Experimental BDEs are obtained from thermochemical analyses of the threshold regions of the collision-induced dissociation cross sections of Zn(+)(N-L)(x) complexes. Density functional theory calculations at the B3LYP/6-31G* level of theory are performed to determine stable structures of these species and to provide molecular parameters needed for the thermochemical analysis of experimental data. Relative stabilities of the various conformations of these N-donor ligands and their complexes to Zn(+) as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) and M06/6-311+G(2d,2p) levels of theory using the B3LYP/6-31G* optimized geometries. The experimental BDEs for the Zn(+)(N-L)(x) complexes are in reasonably good agreement with values derived from density functional theory calculations. BDEs derived from M06 calculations provide better agreement with the measured values than those based on B3LYP calculations. Trends in the sequential BDEs are explained in terms of sp polarization of Zn(+) and repulsive ligand-ligand interactions. Comparisons are made to the analogous Cu(+)(N-L)(x) and Ni(+)(N-L)(x) complexes previously studied.  相似文献   

12.
In relation to the interaction between (137)Cs and soil organic matter, electrospray mass spectrometry experiments and density functional theory (DFT) calculations were carried out on the dissociation of positively charged adducts formed by cesium nitrate and cesium organic salts attached to a cesium cation [Cs(CsNO(3))(CsA)](+) (A = benzoate, salicylate, hydrogen phthalate, hydrogen maleate, hydrogen fumarate, hydrogen oxalate, and hydrogen malonate ion). These mixed clusters were generated by electrospray from methanol solutions containing cesium nitrate and an organic acid. Collision-induced dissociation of [Cs(CsNO(3))(CsA)](+) in a quadrupole ion trap gave [Cs(CsNO(3))](+) and [Cs(CsA)](+) as major product ions. Loss of HNO(3) was observed, and also CO(2) loss in the case of A = hydrogen malonate. Branching ratios for the dissociation into [Cs(CsNO(3))](+) and [Cs(CsA)](+) were treated by the Cooks' kinetic method to obtain a quantitative order of bonding energetics (enthalpies and Gibbs free energies) between Cs(+) and the molecular salt (ion pair) CsA, and were correlated with the corresponding values calculated using DFT. The kinetic method leads to relative scales of Cs(+) affinities and basicities that are consistent with the DFT-calculated values. This study brings new data on the strong interaction between the cesium cation and molecular salts CsA.  相似文献   

13.
We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.  相似文献   

14.
A concerted theoretical (density-functional theory) and experimental electrospray mass spectrometry study was conducted on the formation of cesium cation adducts with small molecules taken as models of specific interactions sites in humic substances. Electrospray experiments with phenol, benzoic acid, salicylic acid, and phthalic acid, in methanolic solution containing cesium nitrate, were performed using a quadrupole ion trap. The formation of positively charged mixed clusters, [Cs(CsNO3)(n)(CsA1)(m)(Cs2A2)(p)]+ (A1 = benzoate, salicylate, and hydrogenophthalate, A2 = phthalate), was observed. Calculations of structures and bonding energetics of Cs+ in simple adducts formed with NO3-, CsNO3, A-, AH, and CsA are reported. The observation of variable cluster stoichiometry (n, m and p values) was interpreted in terms of more or less favorable interaction energies between Cs+ and the neutral species constituting the clusters. Phenol did not form clusters in significant abundances, despite a strong calculated interaction between Cs+ and cesium phenolate. This was attributed to its weak acid dissociation in the electrospray solution.  相似文献   

15.
We have measured the relative calcium-binding energies of amino acids using tandem mass spectrometry of Ca(2+)-bound trimeric amino acids. Although calcium-bound dimeric amino acid complexes coordinated too strongly to allow observation of the two competing dissociation products (calcium-bound monomeric ions) required for analysis of their metal binding affinities using the conventional kinetic method, the Ca(2+)-bound trimeric cluster ions dissociated readily to form dimeric cluster ions through simple ligand losses. The calcium-binding energies were obtained by comparing the ratio of the [Ca(2+)(A(1))(2) - H(+)](+) and [Ca(2+) (A(1))(A(2)) - H(+)](+) ions that dissociated from the [Ca(2+) (A(1))(2)(A(2)) - H(+)](+) ion and the ratio of the [Ca(2+)(A(2))(2) - H(+)](+) and [Ca(2+)(A(1)) (A(2)) - H(+)](+) ions that dissociated from the [Ca(2+)(A(1))(A(2))(2) - H(+)](+) ion, where A(1) and A(2) represent two amino acids. The energies deduced from this analysis represent the relative average binding energies of complexes having the form [Ca(2+)(A(1))(2) - H(+)](+). The relative Ca(2+)-binding strengths of the alpha-amino acid complexes follow the order Cys < Ser < Thr < Ile < Leu < Val < Gly < Ala < Pro < Phe < Met < Tyr < Asn < His < Gln < Trp < Lys < Arg. To our knowledge, this report provides the first example of using kinetic methods to determine the relative binding strengths of divalent metal-amino acid complexes.  相似文献   

16.
The purification of a trypsin inhibitor from Ascaris lumbricoides var. suum is described. The electrophoretically pure preparation which inhibits trypsin in a specific manner is a relatively small peptide containing 5 Asp, 4 Thr, 1 Ser, 11 Glu, 6 Pro, 6 Gly, 5 Ala, 2 Val, 10 (Cys)1/2, 3 Ile, 2 Phe, 7 Lys, 3 Arg and 1 Try.  相似文献   

17.
Radical-cationic gaseous amino acids: a theoretical study   总被引:1,自引:0,他引:1  
Three major forms of gaseous radical-cationic amino acids (RCAAs), keto (COOH), enolic (C(OH)OH), and zwitterionic (COO(-)), as well as their tautomers, are examined for aliphatic Ala(.+), Pro(.+), and Ser(.+), sulfur-containing Cys(.+), aromatic Trp(.+), Tyr(.+), and Phe(.+), and basic His(.+). The hybrid B3LYP exchange-correlation functional with various basis sets along with the highly correlated CCSD(T) method is used. For all RCAAs considered, the main stabilizing factor is spin delocalization; for His(.+), protonation of the basic side chain is equally important. Minor stabilizing factors are hydrogen bonding and 3e-2c interactions. An efficient spin delocalization along the N-C(alpha)-C(O-)O moiety occurs upon H-transfer from C(alpha) to the carboxylic group to yield the captodative enolic form, which is the lowest-energy isomer for Ala(.+), Pro(.+), Ser(.+), Cys(.+), Tyr(.+), and Phe(.+). This H-transfer occurs in a single step as a 1,3-shift through the sigma-system. For His(.+), the lowest-energy isomer is formed upon H-transfer from C(alpha) to the basic side chain, which results in a keto form, with spin delocalized along the N-C(alpha)-C=O fragment. Trp(.+) is the only RCAA that favors spin delocalization over an aromatic system given the low ionization energy of indole. The lowest-energy isomer of Trp(.+) is a keto form, with no H-transfer.  相似文献   

18.
The binding of Na+ to aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), and glutamine (Gln) is examined in detail by studying the collision-induced dissociation (CID) of the four sodiated amino acid complexes with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Analysis of the energy-dependent CID cross sections provides 0 K sodium cation affinities for the complexes after accounting for unimolecular decay rates, internal energy of the reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations for a number of geometric conformations of each Na+(L) complex are determined at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both experimental work and quantum chemical calculations allows the energetic contributions of individual functionalities as well as steric influences of relative chain lengths to be thoroughly explored. Na+ binding affinities for the amide complexes are systematically stronger than those for the acid complexes by 14 +/- 1 kJ/mol, which is attributed to an inductive effect of the OH group in the carboxylic acid side chain. Additionally, the Na+ binding affinity for the longer-chain amino acids (Glx) is enhanced by 4 +/- 1 kJ/mol compared to the shorter-chain Asx because steric effects are reduced.  相似文献   

19.
The gas-phase structures of alkali-metal cation complexes of serine (Ser) are examined using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, in conjunction with ab initio calculations. Spectra of Li+(Ser) and Na+(Ser) are similar and relatively simple, whereas Cs+(Ser) includes distinctive new IR bands, and K+(Ser) and Rb+(Ser) exhibit intermediate behavior. Measured IRMPD spectra are compared to spectra calculated at a B3LYP/6-311+G(d,p) level to identify the structures present in the experimental studies. On the basis of these experiments and calculations, the only conformations accessed for the complexes to the smaller alkali-metal cations, Li+ and Na+, are charge-solvated structures involving tridentate coordination to the amine and carbonyl groups of the amino acid backbone and to the hydroxyl group of the side chain, M1[N,CO,OH]. For the cesiated complex, a band corresponding to a zwitterionic structure, ZW[CO2-], is clearly visible. K+(Ser) and Rb+(Ser) exhibit evidence of the charge-solvated analogue of the zwitterions, M3[COOH], in which the metal cation binds to the carboxylic acid group. Calculations indicate that the relative stability of the M3[COOH] structure is very strongly dependent on the size of the metal cation, consistent with the range of conformations observed experimentally.  相似文献   

20.
Ricin and its corresponding polypeptides (A & B chain) were purified from castor seed. The molecular weight of ricin subunits were 29,000 and 28,000 daltons. The amino acids in ricin determined were Asp45 The22 Ser40 Glu53 Cys4 Gly96 His5 Ile21 Leu33 Lys20 Met4 Phe13 Pro37 Tyr11 Ala45 Val23 Arg20 indicating that ricin contains approximately 516 amino acid residues. The amino acids of the two subunits of ricin A and B chains were Asp23 The12 Ser21 Glu29 Cys2 Gly48 His3 Ile12, Leu17 Lys10 Met2 Phe6 Pro17 Tyr7 Ala35 Val13 Arg13 while in B chain the amino acids were Asp22 The10 Ser19 Glu25 Cys2 Gly47 His1 Ile10, Leu15 Lys11 Met1 Phe7 Pro6 Tyr5 Ala32Val11 Arg10. The total helical content of ricin came around 53.6% which is a new observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号