首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In very rare circumstances, X-ray photoemission spectra of copper in spinel oxides exhibit a “negative binding energy shift”. The origin of such an anomalous XPS chemical shift was investigated. A metastable Ni0.48Co0.24Cu0.6+xMn1.68−xO4 (0 < x < 0.6) spinel was fabricated at 600 °C using a low-temperature solution technique. The binding energy of the 2p3/2 level of copper (930.8 eV) is found 1.9 eV lower than that of Cu0 (932.7 eV). XPS and EXAFS studies revealed that the post-thermal annealing between 600 and 800 °C undergoes an irreversible cubic-to-tetragonal phase transformation through oxidation–reduction reaction Cu1+ + Mn4+  Cu2+ + Mn3+, and only tetrahedral Cu1+ species in the cubic spinel shows this anomalous chemical shift. The negative shift of the core levels was correlated to an equal shift of the Cu 3d valence band levels. XPS valence bands from the samples annealed at different temperatures were compared to DOS calculations. The DOS computations were performed with FEFF-8.1 code using experimental crystal parameters established by the EXAFS analysis. It was found that the tetrahedral Cu1+ in the 600 °C annealed sample exhibits localization of the 3d orbitals showing behavior characteristic to zinc. The completely filled and isolated 3d electron shell appears as a false valence band edge in the XPS spectrum. The position of the Cu 3d, and other core levels, is established by oxygen pinning the Cu valence band levels and by the fixed value of the p–d gap characteristic to the tetrahedral copper environment in this spinel.  相似文献   

2.
In this paper, green and red up-conversion emissions of Er3+–Yb3+ co-doped TiO2 nanocrystals were reported. The phase structure, particle size and optical properties of Er3+–Yb3+ co-doped TiO2 nanocrystals samples were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis–NIR absorption spectra and photoluminescence (PL) spectra. Green and red up-conversion emissions in the range of 520–570 nm (2H11/2, 4S3/24I15/2) and 640–690 nm (4F9/24I15/2) were observed for the Er3+–Yb3+ co-doped TiO2 nanocrystals. The visible up-conversion mechanism and temperature dependence of up-conversion emission for Er3+ in TiO2 nanocrystals were discussed in detail.  相似文献   

3.
A new layered cuprate compound with a nominal composition of GaSr2Y2−xCexCu2O9−δ has been prepared. It crystallizes in a tetragonal lattice with cell parameters: a = 3.812 Å, c = 28.16 Å. The structure of the compound belongs to the same family of 1222 phase and is derived from that of GaSr2LnCu2O7 by replacing the single Ln3+ layer with a double fluorite (Y, Ce)2O2 layer. Like other parent cuprate compounds of superconductors, the as-prepared samples showed antiferromagnetic and semiconducting behavior. After treatment under high oxygen pressure, the samples exhibited bulk superconductivity with transition temperatures between 12–14 K.  相似文献   

4.
Transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 μs. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials.  相似文献   

5.
Conductivities of some tetraalkylammonium halides, viz. tetramethylammonium iodide (Me4NI), tetraethylammonium bromide (Et4NBr), tetraethylammonium iodide (Et4NI), tetra-n-propylammonium bromide (Pr4NBr), tetra-n-butylammonium bromide (Bu4NBr), tetra-n-butylammonium iodide (Bu4NI) and tetra-n-heptylammonium bromide (Hp4NBr) were measured at 298.15 K in 1,3-dioxolane which has a low permittivity (ε = 7.13). A minima in the conductometric curves (molar conductance, Λ vs. square root of concentration, √c) was observed for concentrations which were dependant upon both the salt and the solvent. The observed molar conductivities were explained by the formation of ion-pairs (M+ + X ↔ MX, KP) and triple-ions (2M+ + X ↔ M2X+; M+ + 2X ↔ MX2, KT). A linear relationship between the triple-ion formation constants [log (KT/KP)] and the salt concentrations at the minimum conductivity (log Cmin) was given for all the salts in 1,3-dioxolane. The formation of triple-ions might be attributed to the ion sizes in solutions in which Coulombic interactions and non-Coulombic interactions act as the main forces between the ions (R4N+…..X).  相似文献   

6.
彭玲玲  曹仕秀  赵聪  刘碧桃  韩涛  李凤  黎小敏 《物理学报》2018,67(18):187801-187801
采用高温固相法在空气气氛中合成了新型Mg_(1+y)Al_(2-x)O_4:xMn~(4+),yMg~(2+)深红色荧光粉.利用X射线衍射仪、扫描电子显微镜和荧光光谱仪表征荧光粉的晶体结构和形貌,并分析了发光性质,讨论了掺杂不同浓度Mn4+和过量Mg2+对样品发光强度的影响.结果表明,在300 nm波长激发下样品发射652 nm波长的红光,归因于Mn~(4+)的~2Eg—~4A_(2g)跃迁, Mn~(4+)的最佳掺杂浓度为0.14%.采用Blasse公式计算了Mn~(4+)-Mn~(4+)之间能量传递的临界距离,讨论了可能的能量传递过程和引起浓度淬灭的原因,采用Tanabe-Sugano能级图从理论上计算和分析了Mn~(4+)的d~3电子构型的晶体场强度大小.过量Mg~(2+)可以提高荧光粉的发光强度,同时导致了荧光寿命的缩短,荧光衰减曲线呈单指数变化.探讨了过量Mg~(2+)增强发光强度的机理,阐述了深红色荧光粉MgAl_2O_4:Mn~(4+)发光效率提高的原因.  相似文献   

7.
SrB4O7:Pr3+,Mn2+中的Pr→Mn能量传递   总被引:1,自引:0,他引:1       下载免费PDF全文
从能量传递的角度出发,利用同步辐射光源(德国HASYLAB实验室的SUPERLUMI实验站)对Pr3+和Mn2+掺杂的SrB4O7粉末样品进行了光谱研究.206nm激发下,在SrB4O7:Pr3+(0.1%,摩尔分数)样品中观察到了来自Pr3+离子1S0能级的光子级联发射.SrB4O7:Pr3+样品的发射谱与SrB4O7:Mn2+样品监测Mn2+离子640nm发射的激发谱在330~430nm的波长范围里存在显著的光谱重叠.这个光谱重叠有利于Pr3+→Mn2+的能量传递发生,从而将Pr3+离子级联发射中第一步不实用的紫外或近紫外光子转换为Mn2+的红光发射.双掺杂样品SrB4O7:Pr3+,Mn2+与单掺杂样品SrB4O7:Pr3+的发射谱比较揭示出Pr3+→Mn2+的能量传递的确存在,并且提供了一种传递效率的估算方法,表明通过“Pr3+-Mn2+”组合有可能获得量子效率大于1的高效真空紫外激发发光材料.  相似文献   

8.
Transparent conducting oxide thin film CdTe-doped indium oxide (In2O3) has been grown by pulsed-laser deposition from a target of CdTe powder embedded in metallic indium. The electro-optical and structural properties were investigated as a function of oxygen partial pressure (PO2) and substrate temperature (Ts). A film deposited at Ts=420 °C and PO2=4 Pa shows the minimum resistivity 7.5×10−4 Ω cm, its optical transmission is 83% and the carrier concentration was 8.9×1020 cm3. The optical band gap and the average roughness of that sample were 3.6 eV and 6.45 Å, respectively. X-ray diffraction studies indicated that the films were polycrystalline. This material is a good candidate for being used as transparent conductor in the CdTe–CdS solar cell.  相似文献   

9.
The intrinsic luminescence of glasses of the CaO–Ga2O3–GeO2 system has been investigated. High chemical purity and optical quality glasses, both undoped and doped with transition and rare-earth ions with different compositions, were obtained by high-temperature synthesis. The influences of the basic glass composition, impurities (Cr3+, Mn2+, Eu2+, Nd3+, Ho3+, Er3+, and Ce3+) and different kinds of excitation, on the intrinsic luminescence of the CaO–Ga2O3–GeO2 glasses were investigated. The nature and possible mechanisms of the intrinsic luminescence in glasses of this system are discussed. The proposed models of intrinsic luminescence are supported by electron spin resonance spectroscopy.  相似文献   

10.
In the R1−xDxMnO3 (x0.5) manganites, the structural phase transition at TCO is commonly interpreted as a concomitant charge and orbital ordering (CO/OO) process driven by a co-operative Jahn–Teller effect and Coulomb repulsion forces. The low-temperature phase is supposed to contain well-separated and ordered Mn3+ and Mn4+ ionic species in an NaCl-like pattern. Structure refinement, from a neutron diffraction experiment below TCO on a Pr0.6Ca0.4MnO3 single crystal, gives us a model for the displacement of atoms with respect to the high-temperature phase that invalidates the standard model based in the CO/OO picture. Our result is a non-centrosymmetric crystal structure with two non-equivalent MnO6 octahedra, both being slightly elongated but displaying very similar average Mn–O distances (1.96 and 1.95 Å, respectively) and having off-centered Mn atoms. We argue that this is a proof of the absence of charge ordering in half-doped manganites in the sense of formation of separated Mn3+ and Mn4+ ionic species. A new qualitative interpretation of the CE-type spin ordering (SO) is proposed. The so-called CO transition is, in fact, a structural transition induced by the change in the mean free path of electrons that continue to be thermally activated below TCO by forming ferromagnetic Mn–Mn pairs stabilized by a local double-exchange process. The CE SO pattern results from the ordering of these pairs formed at TCO. High-resolution synchrotron powder diffraction shows a complex anisotropic/asymmetric strains appearing at the transition that can be phenomenologically fitted by additional phases. Complementary electron diffraction and microscopy have shown no trace of macroscopic phase separation.  相似文献   

11.
A series of apatite-type La–Ge–O ceramics were prepared and their cation-defect at the 4f+6h sites and oxide ion-defect at 2a site were investigated. In LaxGe6O12+1.5x ceramics of x=6–12, the higher conductivities were obtained in the region of apatite composition, Lax(GeO4)6O1.5x−12 (x=8–9.33), and the highest conductivity was achieved for La9(GeO4)6O1.5 (x=9), where the number of cation (La3+) occupying the 4f+6h sites is 9 and the number of oxide ion occupying the 2a site is 1.5. The ceramics with cation- and oxide ion-defects were La9−0.66xSrx(GeO4)6O1.5 (x=0–1), La9−1.33xZrx(GeO4)6O1.5 (x=0–1), La9−xSrx(GeO4)6O1.5−0.5x (x=0–3), La9−xZrx(GeO4)6O1.5+0.5x (x=0–1), Lax(GeO4)3x−21(AsO4)27−3xO1.5 (x=0–3), Lax(GeO4)33−3x(AlO4)3x−27O1.5 (x=0–3), La9(GeO4)6−x (AlO4)xO1.5−0.5x (x=0–3), La9(GeO4)6−x(AsO4)xO1.5+0.5x (x=0–1), La9.33−xSrx(GeO4)6O2−0.5x (x=0–1.2) and Lax(GeO4)4.5(AlO4)1.5O1.5x−12.75 (x=8.8–9.83), which were prepared by the partial substitution of La3+and GeO44−of the basic apatite La9(GeO4)6O1.5 with Sr2+ or Zr4+ and AlO45− or AsO43−. Such substitutions lowered the conductivity of La9(GeO4)6O1.5. These results were discussed by the electrostatic interaction between Sr2+, Zr4+, AlO45− or AsO43− and oxide ion as a conductive species.  相似文献   

12.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

13.
Stoichiometric Fe3O4 films have formed epitaxially on -Al2O3 and MgO single-crystal substrates by a reactive vapor deposition method. In order to apply conversion electron Mössbauer spectroscopy depth-selectively, a 5–7 Åthick probe layer containing 57Fe was formed at various depths in inactive 56Fe3O4 matrix films. At the topmost surfaces and also at the interfaces, the essential electronic features of bulk Fe3O4 are retained, including a rapid electron hopping between the Fe2+ and Fe3+ ions at B sites. Minor depth-dependent changes are confined to a few outermost atomic layers, and the changes depend on the orientation and the lattice mismatch with the substrate. For (111) growth on -Al2O3, the surface layer seems to be strongly relaxed to reduced the electric polarization, while a high density of defects seems to be concentrated at the interface with -Al2O3. For (001) growth on MgO, the surface retains the spinel lattice though slightly oxidized, while the interface with MgO has good crystallinity and stoichiometry. An enhanced thermal fluctuation of the Fe3+-spins in contact with the MgO substrate and in the topmost surface layer can be seen in their reduced magnetic hyperfine field at 300 K.  相似文献   

14.
The nonlinear refractive index, n2, of films based on the new glass system Sb2O3–Sb2S3 was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n2 = 3 × 10−15 m2/W, which is three orders of magnitude larger than for CS2, was determined. The result shows the strong potential of antimony–sulfide glass films for integrated nonlinear optics.  相似文献   

15.
The vacuum ultraviolet spectroscopy of Pr3+ doped CaAl4O7, LaMgAl11O19 and SrLaAlO4 is reported. It appears that whenever the aluminate host lattice is excited directly, mainly exciton and 4f2–4f2 [3P0] Pr3+ emission are observed. When the excitation energy is lower, Pr3+ ions are excited selectively and 4f5d–4f2 emission dominates. These observations can be explained by assuming that energy transfer from the host lattice to the Pr3+ ion takes place preferentially via an intermediate exciton state with an energy too low to reach the energetic Pr3+ 4f5d excited states.  相似文献   

16.
Absorption and luminescence measurements of Tm3+ and Ho3+ ions in LiYF4:Tm3+, LiYF4:Ho3+ and LiYF4:Tm3+, Ho3+ crystals were carried out. The data collected were used to determine the Ho3+ absorption coefficient integral for 5I85I7 transition, and the overlap integral between the normalized Tm3+ luminescence spectrum due to the 3F43H6 transition and the Ho3+ absorption band due to 5I85I7 transition. The relevant critical transfer distance (Ro), that gives a measure of the Tm3+–Ho3+ coupling, was determined considering the Förster type interaction between the ions. It was found to be 22.5 Å and 28.8 Å at 300 and 78 K, respectively.  相似文献   

17.
We report on electrical and magnetic properties of polyaniline (PANI) nanotubes (150 nm in diameter) and PANI/Fe3O4 nanowires (140 nm in diameter) containing Fe3O4 nanoparticles with a typical size of 12 nm. These systems were prepared by a template-free method. The conductivity of the nanostructures is 10−1–10−2 S/cm; and the temperature dependent resistivity follows a ln ρT−1/2 law. The composites (6 and 20 wt% of Fe3O4) show a large negative magnetoresistance compared with that of pure PANI nanotubes and a considerably lower saturated magnetization (Ms=3.45 emu/g at 300 K and 4.21 emu/g at 4 K) compared with the values measured from bulk magnetite (Ms=84 emu/g) and pure Fe3O4 nanoparticles (Ms=65 emu/g). AC magnetic susceptibility was also measured. It is found that the peak position of the AC susceptibility of the nanocomposites shifts to a higher temperature (>245 K) compared with that of pure Fe3O4 nanoparticles (190–200 K). These results suggest that interactions between the polymer matrix and nanoparticles take place in these nanocomposites.  相似文献   

18.
Zn2SiO4(ZnB2O4):Mn2+,Sm3+发光材料的制备与荧光性能   总被引:1,自引:1,他引:0  
使用高温固相法首次合成了Zn2SiO4(ZnB2O4):Mn2+,Sm3+发光材料,探讨了烧结温度、Sm2+含量对样品荧光性能的影响.利用X射线衍射(XRD)、荧光光谱等分析手段对Zn2SiO4(ZnB2O4):Mn2+,Sm3+粉末的结构、发光性能进行了表征.确定了该荧光材料的最佳合成条件,离子掺杂浓度等.实验结果表...  相似文献   

19.
Excited state absorption (ESA) of Mn2+ in spinel MgAl2O4 is investigated in detail. For excitation ps-pulses of 351 nm wavelength from a tripled Nd phosphate glass laser are used. During relaxation down to the lowest excited state ESA is measured for various delay times between exciting pulse and probe pulse. The resulting absorption spectra are interpreted in terms of the Mn2+ configurational model.  相似文献   

20.
An alternative approach for obtaining the LiMn2O4 spinel phase is provided by the use of the sol-gel method in aqueous solution. The main electrochemical properties of the sol-gel LiMn2O4 phase are reported. In addition to chronopotentiometric and voltammetric experiments, the kinetics of the electrochemical insertion–extraction of lithium in LixMn2O4 (0.25<x<1) has been investigated using ac impedance spectroscopy. The strong variation of the chemical diffusion coefficient DLi vs x, in the range 10−8–10−11 cm2 s−1 (DLi is found to be maximum for x=0.55) is critically discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号