首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
(+)-Sesamin has been found to have pharmacological effect which can improve activity, prevent aging and has the effect of antihypertension 1-2. Figure 1 shows its chemical structure. (+)-Sesamin has been known to be abundant in sesame originally, but our previous study shows that (+)-sesamin also presents in a Chinese herbal medicine Semen Cuscutae3-4. Gas chromatography (GC) and gas chromatography - mass spectrometry (GC-MS) have been applied for the determination and identification of (+…  相似文献   

2.
Steroids comprise a large group of natural substances that must frequently be monitored in various biological materials. Due to the metabolic versatility of steroid molecules, extremely complex mixtures are often encountered, necessitating the use of a chromatographic procedure prior to measurement. In this article we present our work, that is, the development of analyses of biological steroids (especially vitamin D compounds and neurosteroids) using gas chromatography/mass spectrometry, high-performance liquid chromatography (including inclusion chromatography using cyclodextrin) and liquid chromatography/mass spectrometry.  相似文献   

3.
(α-Diimine)nickel(Ⅱ) {[C6H5 -N = C(CH3)-C(CH3) = N -C6H5]NiBr2}-TiCl4 abbreviated as NiL-TiCl4 combined catalyst which is supported on MgCl2-SiO2 carrier has been prepared, by using alkyl aluminum (AIR3) as the cocatalyst in place of methylaluminoxane (MAO) to catalyze ethylene oligomerization and copolymerization in situ. The influences of procedure for supporting NiL-TiCI4, the molar ratio of NiL to TiCI4, cocatalyst type and polymerization temperature on the catalytic performance were studied. The degree of branching and the composition of the branched chain of polymers produced have been investigated by IR and ^13C-NMR spectra. The results show that the combined catalyst can synthesize the branched polyethylene with various banched chains .The polymerization reaction was monitored by gas chromatography and mass spectrometry (GC-MS). The results show that this catalyst promotes the oligomerization and copolymerization in situ for ethylene.  相似文献   

4.
New [1+1] and 62-membered [2+2] Schiff base macrocycles containing a 2,6-diamidopyridine subunit have been synthesized by condensation reaction of the precursors pyridine-2,6-dicarboxamide and 1,10-bis(20-formylphenyloxy)decane in the presence of phosphoric acid via a one-pot process. The cyclocondensed products were effectively isolated by gel column chromatography and characterized by ~1H NMR, FTIR, mass spectrometry and X-ray analysis. The two macrocycles have a twisted structure, and not an open ‘circular' conformation in the solid state.  相似文献   

5.
毛细管气相色谱法测定烷烯分离装置产物中烯烃及烷烃   总被引:2,自引:0,他引:2  
杨玉国 《色谱》1994,12(5):375-375
Olefin and paraffin contents in products of Olex unit were determined by capillary gas chromatography,instead of mass spectrometry,as a routine assay method.The reproducibility of quantitation has also been evaluated and the results are satisfactory.  相似文献   

6.
The widespread use of pesticides induces heavy adverse effects on human health,especially for the pregnant women and the newborns.In this study,a screening method has been developed for the determination of multi-pesticides in maternal and umbilical cord sera.All pesticides in sera were collected using solid phase extraction(SPE),and analyzed by gas chromatography-quadrupole time of flight mass spectrometry(GC-QTOF MS).To set up the quality criteria,a database of 50 pesticides was created and the accurate masses of 3 up to 5 representative ions with their intensity ratios were included for each pesticide.In addition,a novel"identification points"(IPs)system relying on the accurate MS1 and MS2 spectra was used to interpret the data for each suspected pesticide.The methodology was then applied to a pair of maternal and umbilical cord sera.A total of six pesticide residues were screened out successfully.In conclusion,GC-QTOF MS combined with an accurate mass database seemed to be one of the most efficient tools for systematic pesticide analysis.  相似文献   

7.
In this work,a reliable and sensitive method for detecting polybrominated diphenyl ethers(PBDEs) has been developed by the combination of liquid–liquid extraction and gas chromatography–mass spectrometry.PBDEs were extracted from a large volume of water by liquid–liquid extraction and purified by silica gel chromatography.In order to reduce the deviation,dibromobiphenyl was exploited as the internal standard to minimize differences among the injections.The quantification was performed using an external standard.Good linear correlation coefficients(0.991) and a wide linearity range(1.0–500.0 ng/L) indicated the steadiness of the proposed method.Moreover,the satisfactory recovery(75%)suggested that successful determination of PBDEs in river water had been achieved.Furthermore,the deduction behavior of PBDEs in river water could be inferred according to the results.  相似文献   

8.
It’s still a challenge for mass spectrometers (MS) to analyze samples in non-volatile salts systems. On the one hand, non-volatile salts are easy to crystallize, which will seriously contaminate and clog the transmission system of mass spectrometry, such as capillaries, ion transfer tubes, sampling cones, etc., thus the analysis results can be affected and the MS can be damaged. On the other hand, non-volatile salts always bring ion suppression, which significantly reduces the signal intensity of the analytes. At the same time, the mass spectrum will be dominated by a large number of salt cluster peaks, interfering with the discrimination of charge state. Recently, different methods have been developed to solve above two problems. This article reviewed the present research progress of mass spectrometry analysis for salt-containing samples, focusing on the role of conventional ion source modification and ambientionization mass spectrometry in the analysis of salt-containing samples. Pretreatment methods were also summarized briefly. Finally, the development tendency of mass spectrometry analysis for salt containing samples is predicted and prospected. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

9.
张菁  王昊阳  郭寅龙 《中国化学》2005,23(2):185-189
Twenty common amino acids have been analyzed successfully by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using carbon nanotubes as matrix. From the spectra, little or no background interference or fragmentation of the analytes has been observed. This method was also applied to the analysis of amino acid mixture successfully. Carbon nanotubes have some features such as large surface area to disperse the analyte molecules sufficiently and prevent the sample aggregation and strong ultraviolet absorption to transfer energy easily to the analyte molecules. The present method has potential application for the rapid and sensitive analysis of amino acids and their mixture.  相似文献   

10.
Several recently developed analytical techniques, based on high-end mass spectrometry and chromatography, for dealing with challenges in petroleum characterization are reported. Folded flight path time-of-flight mass spectrometry provides resolving power up to 100000, enabling accurate mass measurement for molecular formula determination with high confidence. Atmospheric pressure chemical ionization (APCI) can be used in both gas chromatography (GC, as APGC) and liquid chromatography (LC) for analyzing non-polar hydrocarbons as well as polar compounds. The improvement in chromatography facilitates the mass spectrometric analysis through online coupling. Comprehensive two-dimensional gas chromatography (GC×GC) resolves overlapping components, rendering accurate identification and quantitation. Supercritical fluid extraction has been developed as an alternative method to replace traditional solvent extraction methods and eliminate the use of large volumes of solvents that can be harmful to health and environment. Supercritical fluid chromatography (SFC) has been developed as a convergence of GC and LC chromatographic techniques. The use of SFC for heavy oils and residua has been demonstrated. Prospective developments in the use of mass spectrometric and chromatographic methods for petroleum characterization are also described.  相似文献   

11.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

12.
Galanthamine‐type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC‐EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high‐resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC‐MS/MS) and accurate mass measurements (GC‐HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC‐MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine‐N‐oxide and N‐formylnorgalanthamine, the galanthamine‐type compounds showed abundant [M]+. and [M‐H]+ ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine‐type alkaloids, including 3‐O‐(2′‐butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC‐MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Soft‐ionization methods are currently at the forefront of developing novel methods for analysing degraded archaeological organic residues. Here, we present little‐used soft ionization method of matrix assisted laser desorption/ionization‐Fourier transform‐ion cyclotron resonance‐mass spectrometry (MALDI‐FT‐ICR‐MS) for the identification of archaeological lipid residues. It is a high‐resolution and sensitive method with low limits of detection capable of identifying lipid compounds in small concentrations, thus providing a highly potential new technique for the analysis of degraded lipid components. A thorough methodology development for analysing cooked and degraded food remains from ceramic vessels was carried out, and the most efficient sample preparation protocol is described. The identified components, also controlled by independent parallel analysis by gas chromatography‐mass spectrometry (GC‐MS) and gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS), demonstrate its capability of identifying very different food residues including dairy, adipose fats as well as lipids of aquatic origin. The results obtained from experimentally cooked and original archaeological samples prove the suitability of MALDI‐FT‐ICR‐MS for analysing archaeological organic residues. Sample preparation protocol and identification of compounds provide future reference for analysing various aged and degraded lipid residues in different organic and mineral matrices.  相似文献   

15.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

18.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

19.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC‐CI‐MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long‐term metabolite (18‐nor‐17β‐hydroxymethyl,17α‐methyl‐androst‐1,4,13‐trien‐3‐one) could be detected up to 26 days by using GC‐CI‐MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long‐term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号