首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 65–73, 1998  相似文献   

2.
This paper reports the first use of temperature–temperature 2D correlation dielectric relaxation spectroscopy (2D COS‐DRS) to study the molecular relaxation dynamics in ion‐irradiated poly(ether ether ketone) (PEEK). With the help of the high resolution and high sensitivity of 2D COS‐DRS, it was possible to locate the position of the motion of water molecules in the dielectric spectrum of PEEK. This occurred at −20°C and increased in intensity on increasing water contents. On irradiation, a new relaxation was observed at −75°C and −85°C for proton and helium ion‐irradiated samples, respectively. This increased in intensity on increasing radiation dose and was assigned to main‐chain phenyl motions of the cross‐linked units of the polymer. 2D COS‐DRS was also successfully applied to resolve the overlap in molecular events in the region of glass transition. Three processes that change in different directions with respect to ion irradiation dose were identified. These were at 160°C, 175°C, and 240°C and were assigned to the α relaxation, second α relaxation, and the onset of conductivity, respectively. In addition, hybrid 2D COS‐DRS was used to investigate the effect of the so‐called linear energy transfer effect, and the results showed that helium ions were more effective in cross‐linking PEEK. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A random copolymer (RCP) containing poly(ether ether ketone) (PEEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. Its chemical structure and liquid crystalline properties were characterized by FT‐IR, differential scanning calorimetry (DSC) and polar light microscopy (PLM) respectively. A single glass transition temperature (Tg) at 134.0°C, a melting temperature (Tm) at 282.0°C and a temperature of ignition (Ti) at 331.3°C can be observed. Blends of PEEK and TLCP with and without RCP as compatibilizer were prepared by extrusion and the effect of RCP on the thermal properties, dynamic mechanical properties, morphology and static tensile mechanical properties of blends was investigated by means of DSC, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), etc. Dynamic mechanical measurements indicated that there appeared to be only a single tan δ peak resulting from the glass transition of the PEEK‐rich phase and the Tg value shifted towards higher temperature due to the presence of compatibilizer, as suggested partial compatibility. Morphological investigations showed that the addition of RCP to binary blends reduced the dispersed phase size and improved the interfacial adhesion between the two phases. The ternary compatibilized blends showed enhanced tensile modulus compared to their binary blends without RCP. The strain at break decreased for the ternary blends due to embrittlement of the matrix by the incorporation of some RCP to the matrix phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
UV-induced graft polymerization of acrylic acid(AA)on poly(ether ether ketone)(PEEK)films was carried out to introduce-COOH for the subsequent immobilization of bovine serum albumin(BSA).BSA was introd...  相似文献   

5.
Photo-grafting of hydrophilic monomer and space arms was used to enhance the hydrophilicity of poly(ether ether ketone)(PEEK) with the aim of extending its application to biological fields. PEEK films were surface modified by UV grafting of acrylic acid(AA) to introduce ―COOH on PEEK surface. Adipic amine was used as a space arm to introduce heparin on PEEK surface based on the condensation reaction between ―NH2 and ―COOH. The modified PEEK(PEEK-COOH, PEEK-NH2 and PEEK-Hep) was characterized by energy-disperse spectroscopy (EDS), X-ray photoelectron spectroscopy(XPS) and water contact angle measurements, which show that heparin was grafted on PEEK surface. The contact angles of modified PEEK films were lower than those of original films, demonstrating a significant improvement of surface hydrophilicity.  相似文献   

6.
The supercritical CO2 (sc‐CO2) provided a moderate condition to make the amorphous CO2/poly(ether ether ketone) (PEEK) mixtures at 30 MPa and 40 °C. The crystal is obtained directly after treating CO2/PEEK mixture from 70 to 240 °C. The crystallization behavior of CO2/PEEK mixtures before and after treatment is investigated in detail by using differential scanning calorimetry (DSC), dynamic mechanical analysis, and wide‐angle X‐ray diffraction. DSC curves of CO2/PEEK samples showed the double cold crystallization peaks. The lower cold crystallization peak moves to higher temperature with the content of CO2 decreasing, and the higher cold crystallization peak keeps their temperatures at about 172 °C without a remarkable change. The dynamic mechanical spectrometry was also introduced to explain the relaxation behavior of the glass transition and crystallization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2927–2936, 2007  相似文献   

7.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

8.
Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characterization of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.  相似文献   

9.
Sorption of methylene chloride by poly(ether ether ketone) (PEEK) has been studied for both amorphous and highly crystalline polymer. After the determination of sorption and desorption curves, the crystallinity of the two materials after desorption was determined both by density and X-ray measurements. The experimental results indicate the existence of solvent-induced crystallization in initially amorphous PEEK and a virtual lack of this process in highly crystalline PEEK. In the latter case, the observed density increase is attributed to solvent compression and a decrease in free volume. The mechanical behavior of both PEEKs is consistent with their crystallinity levels. The mechanical behavior of both PEEKs before and after sorption allows us to discern the separate effects of the two processes to which the presence of methylene chloride in PEEK gives rise, i.e., plasticization and solvent-induced crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Dielectric relaxation spectroscopy (DRS) and dynamic mechanical thermal analysis (DMTA) were used to investigate the secondary relaxation behaviour of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a miscible PEEK/PEI blend. The data from each technique, for the γ-process, did not lie on the same Arrhenius line, while the rate of molecular motion of the γ-process in the blends was largely an average of each component's motions. The β-process in PEI was plasticised by the presence of PEEK.  相似文献   

11.
The effect of shear on the crystallization behavior of the poly(ether ether ketone) (PEEK) has been investigated by means of ex situ wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering, and differential scanning calorimetry (DSC). The changes of the intensity of WAXD patterns along shear direction of the PEEK induced by short‐term shear were observed when the samples crystallized at 330 °C. The results showed that the dimensions of the crystallites perpendicular to the (110) and (111) planes reduced with the increase of shear rate, whereas the dimensions of the crystallites perpendicular to (200) plane increased with the increase of shear rate. Moreover, increasing shear rate can lead to the increase of the crystallinity as well as the average thickness of the crystalline layers. Correspondingly, a new melting peak at higher temperature was found during the subsequent DSC scanning when the shear rate was increased to 30 s?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 220–225, 2010  相似文献   

12.
Two types of antioxidants(a primary antioxidant and a secondary antioxidant) were used to improve the stability of poly(ether ether ketone)(PEEK). The effects of the antioxidants on the properties of PEEK and the stabilization mechanism were investigated by some characterization methods, such as rheometer, thermogravimetric ana- lysis(TGA), universal tester and electron spin resonance(ESR). The results indicate that the efficiency of the phosphorous antioxidant(DS) in improving the stability of PEEK was better than that of the phenolic antioxidant(DN) in both melting stability and thermal stability, and the thermal stability of PEEK sample containing 0.07%(mass fraction) DS was the best among all the samples due to the decrease of the free radicals density, as proven by ESR measurement. Additionally, no obvious changes could be observed in mechanical properties of PEEK containing antioxidants compared to those of virgin PEEK.  相似文献   

13.
The phase behavior of binary blends of poly(ether ether ketone) (PEEK), sulfonated PEEK, and sulfamidated PEEK with aromatic polyimides is reported. PEEK was determined to be immiscible with a poly(amide imide) (TORLON 4000T). Blends of sulfonated and sulfamidated PEEK with this poly(amide imide), however, are reported here to be miscible in all proportions. Blends of sulfonated PEEK and a poly(ether imide) (ULTEM 1000) are also reported to be miscible. Spectroscopic investigations of the intermolecular interactions suggest that formation of electron donoracceptor complexes between the sulfonated/sulfamidated phenylene rings of the PEEKs and the n-phenylene units of the polyimides are responsible for this miscibility. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
制备了新型可溶性含氟聚芳醚酮高性能材料, 使该材料结合了含氟聚合物与聚芳醚酮两种材料的优点, 既具有很好的热稳定性、溶解性和阻燃性, 又有较低的介电常数和吸湿性[5,9,10]. 对于提高聚芳醚酮类材料的性能, 拓展其使用范围和加工方法具有很大的开发前景和实用价值.  相似文献   

15.
This paper describes a study of the surface plasticization and antiplasticization of an amorphous and a semicrystalline poly(ether ether ketone) (PEEK) in solvent environments using nanohardness method. A range of solvents (octane, chloroform, tetrachloroethane, acetone, dichlorobenzene, polyethyleneglycol (PEG), methanol and water) based on the Hilderbrand’s Solubility Parameter were selected as solvent environments. The results of the nanoindentation hardness experiments performed on the virgin and the solvent immersed polymeric surfaces are reported. The surface plasticization or antiplasticization is reported on the basis of the softening or the hardening of the near surface layers (?1 μm) after immersion of the polymeric surfaces in the solvent environments. Surface plasticization of the amorphous PEEK has been observed in organic solvents. The chlorine containing solvents have severely degraded the hardness of the amorphous polymer. A surface hardening of the amorphous PEEK has been observed after immersion in water. Semicrystalline PEEK was seen to exhibit a considerable inert behaviour to common organic solvents but chlorinated organic solvents and water have caused a decrease in the surface mechanical properties.  相似文献   

16.
The relaxation behavior of four amorphous poly(aryl ether ketone)s was investigated using dielectric relaxation spectroscopy and dynamic mechanical analysis. The temperature dependence of the relaxation times of the glass transition process and the cooperative nature of this process were unaffected by changes in polymer structure. The temperature location of the loss peaks for all polymers progressed smoothly between the low frequency of the mechanical measurements and the higher frequencies of the dielectric probe. Differences were observed in mechanical activation energy and dielectric relaxation strength for one polymer which contained a significant concentration of meta linkages, compared with the para-linked polymers, while relaxation broadness was generally greater in the dynamic mechanical mode. Changes in chemical structure had little effect on the shape, intensity, and location of the β-relaxation peak, the main observation being that the Arrhenius activation energy measured by dynamic mechanical analysis was significantly higher than that calculated from the dielectric data. The dielectric β-relaxation was sensitive to absorbed moisture. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 851–859, 1998  相似文献   

17.
Two types of antioxidants (a phenolic antioxidant and a phosphorous antioxidant) were used to improve the stability of poly (ether ether ketone) (PEEK). To evaluate the effect of the antioxidants on the properties of PEEK and the stabilization mechanism, some characterization methods were carried out, such as rheometer, TGA, and electron spin resonance (ESR). The results indicated that the efficiency of the phosphorous antioxidant (DS) in improving the stability of PEEK was better than that of the phenolic antioxidant (DN) and the thermal stability of PEEK sample containing 0.07 wt% DS was the best among all samples due to the decrease of the free radicals density, as proven by ESR measurement. The possible stabilization mechanism of the antioxidants to PEEK was proposed to reveal the reason that caused the different performances of the two types of antioxidants to PEEK.  相似文献   

18.
聚醚醚酮/聚醚醚酮酮共混体系的熔融和等温结晶行为   总被引:3,自引:0,他引:3  
采用熔融共混方法制备了聚醚醚酮和聚醚醚酮酮的共混物,用DSC对共混物的熔融行为和等温结晶行为进行了研究.结果表明,共混物熔点随聚醚醚酮含量增加而降低,但与聚醚醚酮酮有相同的平衡熔点,二者共混没有改变其结晶的成核与生长机制.  相似文献   

19.
聚醚醚酮(PEEK)自工业化以来[1],由于其优异的性能已在机械、航天等领域得到广泛应用.各种聚芳醚酮类聚合物相继被开发出来.但以亲电缩聚路线制备聚醚醚酮醚酮(PEEKEK)的报道较少[2].本文以二苯醚和4-氟苯甲酰氯为主要反应试剂,采取付氏酰基化...  相似文献   

20.
Poly (ether ether ketone)(PEEK) is a high-performance semi-crystalline thermoplastic polymer.Exposure of the polymeric surface to solvents can have a strong effect like softening/swelling of polymeric network or dissolution.In this study, nano-indentation analysis was performed to study the effect of acetone on the surface mechanical properties of PEEK using different exposure time.The experiments were performed with a constant loading rate (10 nm/s) to a maximum indentation displacement (1000 nm).A 30-second hold segment was included at the maximum load to account for any creep effects followed by an unloading segment to 80% unloading.The indentation hardness and the elastic modulus were computed as a continuous function of the penetration displacement in the continuous stiffness mode (CSM) indentation.The experimental data showed that the peak load decreased from ~5.2 mN to ~1.7 mN as exposure time in solvent environment increased from 0 to 18 days.The elastic modulus and the hardness of PEEK samples also displayed a decreasing trend as a function of exposure time in the solvent environment.Two empirical models were used to fit the experimental data of hardness as a function of exposure time which showed a good agreement with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号