首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indentation is a comparatively simple and virtually nondestructive method of determining mechanical properties of material surfaces by means of an indenter inducing a localized deformation. The paper present experimental results of the load-displacement curves, the hardness and the elastic modulus data, and associated analysis for poly(methyl methacrylate) (PMMA) surfaces as a function of contact displacement. The experimental results include continuous stiffness indentations performed using constant loading rate and constant displacement rate experiments. The continuous stiffness indentation involves continuous calculation of a material stiffness, and hence hardness and elastic modulus of surfaces, during discrete loading-unloading cycles, as in a conventional indentation routine, and in a comparatively smaller time constant. The dependence of the compliance curves, the hardness, the elastic modulus and the plasticity index upon the imposed penetration depth, the applied normal load and the deformation rate are described. Tip area and load frame calibrations for the continuous stiffness indentation are also reported. The paper includes practical considerations encountered during indentation of polymers specifically at low penetration depths. The experimental results show a peculiarly harder response of PMMA surfaces at the submicron (near to surface) layers.  相似文献   

2.
This paper describes a study of the surface plasticization and antiplasticization of an amorphous and a semicrystalline poly(ether ether ketone) (PEEK) in solvent environments using nanohardness method. A range of solvents (octane, chloroform, tetrachloroethane, acetone, dichlorobenzene, polyethyleneglycol (PEG), methanol and water) based on the Hilderbrand’s Solubility Parameter were selected as solvent environments. The results of the nanoindentation hardness experiments performed on the virgin and the solvent immersed polymeric surfaces are reported. The surface plasticization or antiplasticization is reported on the basis of the softening or the hardening of the near surface layers (?1 μm) after immersion of the polymeric surfaces in the solvent environments. Surface plasticization of the amorphous PEEK has been observed in organic solvents. The chlorine containing solvents have severely degraded the hardness of the amorphous polymer. A surface hardening of the amorphous PEEK has been observed after immersion in water. Semicrystalline PEEK was seen to exhibit a considerable inert behaviour to common organic solvents but chlorinated organic solvents and water have caused a decrease in the surface mechanical properties.  相似文献   

3.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

4.
This work aims to investigate the effects of experimental variables on nano-indentation measurements on PMMA. A wide range of conditions, including different load levels, loading rates, holding times and unloading rates were employed to examine the sensitivity of nano-indentation measurements to the selected experimental variables. The test results indicate that the elastic modulus and hardness of PMMA are approximately load-level invariant. However, they are sensitive to the loading rate, holding time and unloading rate. Both elastic modulus and hardness increase with increasing loading rate, while increasing holding time leads to decreasing elastic modulus and hardness. Moreover, the unloading rate has almost no obvious effect on the hardness of PMMA, while the opposite is true for elastic modulus.  相似文献   

5.
Nano-load (n-IIT) and micro-load (μ-IIT) instrumented indentation tests (IITs) were used to characterize elastic modulus and hardness in a semicrystalline polymer. The tests were conducted with loading rates ranging from 4.9 to 317 mN.min−1 for n-IIT and from 300 to 10000 mN.min−1 for μ-IIT. A decrease in the elastic modulus was observed as the load rate increased for the n-IIT process, and the elastic modulus increased as the load rate increased for the μ-IIT process. This behavior was explained by two-flow volume control under the indenter and the corresponding shear stress, which can influence the state of stress. The effect of holding time on the elastic modulus and hardness was also investigated for μ-IIT. E decreased with increasing holding time up to 30 s and became constant from there on. Hardness, however, decreased for all holding times evaluated. The steady state creep was only reached after 90 s, which is significantly higher than the time for elastic modulus stabilization.  相似文献   

6.
Nanoindentation tests were performed on polydimethylsiloxane to characterize its mechanical behavior at different indentation depths and loading times. Astonishing indentation size effects have been observed in these experiments where the universal hardness increases by about 15 times from indentation depths of 5000 down to 100 nm. The hardness was found to depend on the loading time at small indentations, while at larger indentation depths the hardness hardly changed with loading time. In an attempt to unveil the underlying deformation mechanisms, an in-depth experimental study is pursued in this article with detailed analysis of the experimental data. Applying different loading times, the indentation experiments were evaluated at indentation depths from 100 to 5000 nm with respect to (a) universal hardness, (b) ratio of remaining indentation depth after unloading to maximum indentation depth, (c) ratio between elastic and total indentation works, and (d) indentation stiffness at maximum applied force. All these characteristics are found to be significantly different compared to a reference material that does not exhibit indentation size effects. The corresponding experimental data has been analyzed with an existing indentation depth dependent hardness model for polymers that has been motivated by a Frank elasticity related theory incorporating rotation gradients.  相似文献   

7.
Uniaxial tensile creep tests at various applied stresses were carried out to demonstrate that PP is nonlinear viscoelastic. A novel phenomenological model consisting of springs, dashpots, stress-locks and sliders was proposed to describe the nonlinear viscoelasticity. Indentation creep tests at different applied load levels were also performed on nonlinear viscoelastic PP. It was found that the shear creep compliance varies with the applied load level when the applied load is less than 5 mN, which means the indentation creep behavior was nonlinear. To find the real reason for the nonlinearity in indentation creep tests, the elastic modulus at various indentation depths was measured using continuous stiffness measurements (CSM). By analyzing the variation of elastic modulus with indentation depth, the nonlinearity of indentation creep behavior was proved to be caused by the non-uniform properties in the surface of the specimen rather than nonlinear viscoelasticity.  相似文献   

8.
聚醚醚酮/聚醚醚酮酮共混体系的熔融和等温结晶行为   总被引:3,自引:0,他引:3  
采用熔融共混方法制备了聚醚醚酮和聚醚醚酮酮的共混物,用DSC对共混物的熔融行为和等温结晶行为进行了研究.结果表明,共混物熔点随聚醚醚酮含量增加而降低,但与聚醚醚酮酮有相同的平衡熔点,二者共混没有改变其结晶的成核与生长机制.  相似文献   

9.
The rolling and roller-drawing of poly(ether ether ketone) (PEEK) sheets were carried out in the roller temperature range of 165-262°C. The crystal orientation functions of the PEEK sheets were determined from the azimuthal intensity distribution of wide-angle x-ray diffraction, and the orientation behavior in the amorphous region was characterized by the measurements of sonic modulus and polarized fluorescence. The orientation functions increase monotonically with increasing draw ratio. The orientation function in the amorphous region is close to that of crystal orientation function of the same sample. The long period evaluated by small-angle x-ray scattering is almost constant over the draw ratio range studied, whereas the crystallite size along the 001 plane, D001 tends to increase with increasing draw ratio. The value of the crystallite size exceeds the product of the crystallinity and the long period. The result suggests the formation of the crystalline linkages that penetrate the periodic layers. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Polyether ether ketone (PEEK) is a semi-crystalline thermoplastic polymer having excellent mechanical and thermal properties. Exposure of this polymer to aliphatic and aromatic solvents can lead to degradation or swelling of the polymeric material. The present work described the plasticization and stability analysis of semi-crystalline PEEK under different aromatic and aliphatic solvent environment. A variety of solvents (acetone, benzene, benzyl alcohol, chloroform, methanol, and toluene), based on their Hildebrand’s Solubility Parameter, were chosen for investigation. The physico-chemical characteristics of virgin and treated polymeric samples were investigated using Gas Chromatography–Mass Spectrometry (GC–MS), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR) techniques. The results indicated that the solvent exposure did not significantly affect the thermal behavior and chemical structure of the polymer. However, it seems that certain components of the polymer were leached into the solvent phase as revealed by the GC–MS analysis. The present study identified PEEK as a potentially suitable polymer for the applications where high resistance to aliphatic and aromatic solvents is needed.  相似文献   

11.
Nano-indentation is an interesting tool for analyzing nano-scale mechanical properties. The analysis of nano-mechanical properties as a function of experimental conditions is very critical for designing engineering components. In this study, nano-indentation experiments were performed by considering different values of amplitude (1, 5, 10?nm), frequency (11.2, 22.5, 45?Hz), strain rate (0.02, 0.05, 0.1, 0.2, 1?s?1), peak load (10, 30, 100?mN) and hold time (1, 3, 5, 10, 20, 50, 100?sec) to analyze their effect on the mechanical properties of LDPE. The results showed that the effect of amplitude and frequency on the nano-mechanical properties of LDPE were negligible. Load-displacement curves displayed a shift towards higher indentation depths along with a decrease in peak load from 20.6 to 14.8?mN by having a decrease in strain rate from 1 to 0.02?s?1. Elastic modulus and hardness values exhibited a decrease with an increase in hold time. Logarithmic creep model was used to fit the experimental data of creep as a function of holding time which showed good agreement (r2 ≥ 0.97) with the experimental values. Recommended holding times are also suggested to eliminate the creep and nose problem in order to achieve high accuracy in measurements.  相似文献   

12.
Photo-grafting of hydrophilic monomer and space arms was used to enhance the hydrophilicity of poly(ether ether ketone)(PEEK) with the aim of extending its application to biological fields. PEEK films were surface modified by UV grafting of acrylic acid(AA) to introduce ―COOH on PEEK surface. Adipic amine was used as a space arm to introduce heparin on PEEK surface based on the condensation reaction between ―NH2 and ―COOH. The modified PEEK(PEEK-COOH, PEEK-NH2 and PEEK-Hep) was characterized by energy-disperse spectroscopy (EDS), X-ray photoelectron spectroscopy(XPS) and water contact angle measurements, which show that heparin was grafted on PEEK surface. The contact angles of modified PEEK films were lower than those of original films, demonstrating a significant improvement of surface hydrophilicity.  相似文献   

13.
Two types of antioxidants (a phenolic antioxidant and a phosphorous antioxidant) were used to improve the stability of poly (ether ether ketone) (PEEK). To evaluate the effect of the antioxidants on the properties of PEEK and the stabilization mechanism, some characterization methods were carried out, such as rheometer, TGA, and electron spin resonance (ESR). The results indicated that the efficiency of the phosphorous antioxidant (DS) in improving the stability of PEEK was better than that of the phenolic antioxidant (DN) and the thermal stability of PEEK sample containing 0.07 wt% DS was the best among all samples due to the decrease of the free radicals density, as proven by ESR measurement. The possible stabilization mechanism of the antioxidants to PEEK was proposed to reveal the reason that caused the different performances of the two types of antioxidants to PEEK.  相似文献   

14.
Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characterization of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.  相似文献   

15.
Two types of antioxidants(a primary antioxidant and a secondary antioxidant) were used to improve the stability of poly(ether ether ketone)(PEEK). The effects of the antioxidants on the properties of PEEK and the stabilization mechanism were investigated by some characterization methods, such as rheometer, thermogravimetric ana- lysis(TGA), universal tester and electron spin resonance(ESR). The results indicate that the efficiency of the phosphorous antioxidant(DS) in improving the stability of PEEK was better than that of the phenolic antioxidant(DN) in both melting stability and thermal stability, and the thermal stability of PEEK sample containing 0.07%(mass fraction) DS was the best among all the samples due to the decrease of the free radicals density, as proven by ESR measurement. Additionally, no obvious changes could be observed in mechanical properties of PEEK containing antioxidants compared to those of virgin PEEK.  相似文献   

16.
聚芳醚酮类材料因其优异的综合性能在许多领域得到广泛应用 [1,2 ] .许多研究者通过提高聚芳醚酮分子链的刚性度来实现进一步提高其使用温度 ,但由于其在高温时流动性下降 ,熔体粘度增大 ,给加工及应用带来很大困难[3] .基于此 ,我们将可在高温或辐照条件下发生交联反应的硫醚结构作为交联点引入到聚醚醚酮主链中 ,合成了可控交联的聚醚醚酮[4 ,5] .聚合物的分子结构及其熔体中分子的内部作用可以用流变学进行研究 .因此 ,我们用动态流变学实验监测跟踪聚合物的交联反应过程 ,研究可控交联聚醚醚酮的交联反应动力学 ,为设计改造分子结构以满…  相似文献   

17.
UV-induced graft polymerization of acrylic acid(AA)on poly(ether ether ketone)(PEEK)films was carried out to introduce-COOH for the subsequent immobilization of bovine serum albumin(BSA).BSA was introd...  相似文献   

18.
Nanoindentation of cellulose diacetate‐graft‐poly(lactide)s (CDA‐g‐PLLAs) synthesized by ring opening graft copolymerization of L ‐lactide in bulk onto the residual hydroxyl positions on CDA were conducted to investigate the effect of the molecular composition and thermal aging on mechanical properties and creep behavior. Continuous stiffness measurement (CSM) technique was used to obtained hardness and elastic modulus. These material properties were expressed as a mean value from 100 to 300 nm depths and an unloading value at final indentation depth. The hardness and elastic modulus in all CDA‐g‐PLLAs were higher than those in pure CDA, indicating that the introduction of PLLA increases the hardness and elastic modulus. With an increase of crystallinity by thermal aging, the hardness and elastic modulus were increased in both CDA‐g‐PLLA and PLLA. The creep test performed by CSM showed that the creep strain of CDA was decreased by the grafting of PLLA. Thermal aging decreased the creep strain of CDA‐g‐PLLA and PLLA. With an increase of holding time, hardness was decreased, whereas elastic modulus was kept almost constant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1114–1121, 2007  相似文献   

19.
The dynamic relaxation behavior of solvent-crystallized poly(ether ether ketone) (PEEK) has been investigated in the region of the glass-rubber (α) relaxation using dynamic mechanical and dielectric methods. Amorphous PEEK films were exposed to saturated methylene chloride and acetone vapor, with solvent-induced crystallization observed for both penetrants. Sample desorption at elevated temperatures (under vacuum) resulted in virtually complete removal of residual penetrant, thus providing for the measurement of relaxation characteristics independent of plasticization. Both dynamic mechanical and dielectric studies indicated a marked positive offset in the isochronal relaxation temperatures of the solvent-crystallized samples relative to thermally crystallized specimens of comparable bulk crystallinity, and a higher apparent activation energy in the solvent-crystallized case. These results are consistent with the evolution of a tighter crystalline morphology (i.e., smaller crystal long spacing) in the solvent-crystallized samples, the crystallites imposing a greater degree of constraint on the long-range motions of the amorphous chains inherent to the glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
It is well known that a clear disparity exists between the elastic modulus determined using macroscopic tensile testing of polymers and those determined using nanoindentation, with indentation moduli generally overestimating the elastic modulus significantly. The effects of pile-up, viscoelasticity and hydrostatic stress on the indentation modulus of an epoxy matrix material are investigated. An analysis of residual impressions using scanning probe microscopy indicates that material pile-up is insignificant. Viscous effects are negated by increasing the time on the sample during the loading/hold segment phases of the indentation test, and by calculating the contact stiffness at a drift-insensitive point of the unloading curve. Removing the effects of viscous deformation reduces the modulus by 10–13%, while also significantly improving the non-liner curve fitting procedure of the Oliver and Pharr method. The effect of hydrostatic stress on the indentation modulus is characterised using relations from literature, reducing the measured property by 16%. Once viscous and hydrostatic stress effects are accounted for, the indentation modulus of the material compares very well with the bulk tensile modulus, and modifications to standard indentation protocols for polymers are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号