首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2474–2480  相似文献   

2.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

3.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

5.
A series of novel comblike mesogen-jacketed liquid-crystalline graft copolymers, poly(p-phenylene)-g-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PPP-g-PMPCS) copolymers, have been designed and successfully synthesized by a Yamamoto coupling reaction and subsequent atom transfer radical polymerization (ATRP). 1H NMR spectroscopy, ultraviolet–visible spectra, and gel permeation chromatography (GPC) have been used to confirm the molecular structure of the macroinitiator and the copolymers. A study of the polymerization kinetics of ATRP has shown that the molecular weight of the copolymer increases linearly with the conversion of the monomer, whereas the polydispersity remains narrow (≤1.28), indicating that the ATRP of 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene is well controlled. Thermogravimetric analysis and differential scanning calorimetry (DSC) measurements have indicated that the PPP-g-PMPCS copolymers have better thermal stabilities than the macroinitiator, and their thermal stabilities increase with increasing molecular weight. The liquid-crystalline behavior has been examined with polarized optical microscopy, DSC, one-dimensional wide-angle X-ray diffraction (1D WAXD), and two-dimensional wide-angle X-ray diffraction (2D WAXD). The results show that all the comblike copolymers exhibit obvious liquid-crystalline behaviors, even though the GPC molecular weight of the segments of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PMPCS) have been determined to be far less than the critical value of linear PMPCS. Moreover, 1D WAXD measurements show that the temperature at which the comblike mesogen-jacketed liquid-crystalline copolymers can transform into a liquid-crystalline phase is low; about 20 °C in comparison with the linear ones. 2D WAXD analysis has revealed that these comblike copolymers should be assigned to a hexatic columnar nematic (ΦHN) phase. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2543–2555, 2007  相似文献   

6.
Graft copolymers of poly(tulipalin A) (PT) and poly(DL‐lactide) (PDLLA) (PT‐g‐PDLLA) having various graft lengths and ratios were synthesized by free‐radical copolymerization of α‐methylene‐γ‐butyrolactone (MBL) and PDLLA macromonomers (HEMA‐PDLLA) terminated by 2‐hydroxyethyl methacrylate (HEMA)‐terminated. HEMA‐PDLLA were synthesized by ring opening polymerization (ROP) of DL‐lactide in the presence of HEMA. Both HEMA‐PDLLA and the copolymers were characterized by NMR spectroscopy and gel permeation chromatography (GPC). The thermal properties of the graft copolymers were found to depend on the graft length and the ratio. The copolymers consisting of PDLLA side chains of Mn = 500 Da showed a single Tg between Tgs of the two component polymers, suggesting a miscible state of PT and PDLLA. In contrast, the copolymers consisting of PDLLA side chains of Mn = 1100, 2000, and 7000 Da showed two isolated Tg, suggesting two segregated domains. The AFM phase images of the copolymers supported the single and phase‐separated morphologies for the former and latter systems, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A method for the synthesis of well-defined poly(alkyl vinyl ether–2-ethyl-2-oxazoline) diblock copolymers with hydrolytically stable block linkages has been developed. Monofunctional poly(alkyl vinyl ether) oligomers with nearly Poisson molecular weight distributions were prepared via a living cationic polymerization method using chloroethyl vinyl ether together with HI/ZnI2 as the initiating system and lithium borohydride as the termination reagent. Using the resultant chloroethyl ether functional oligomers in combination with sodium iodide as macroinitiators, 2-ethyl-2-oxazoline was polymerized in chlorobenzene/NMP to afford diblock copolymers. A series of poly(methyl vinyl ether–2-ethyl-2-oxazoline) diblock materials were found to have polydispersities of ≈ 1.3–1.4 and are microphase separated as indicated by two Tg's in their DSC thermograms. These copolymers are presently being used as model materials to study fundamental parameters important for steric stabilization of dispersions in polar media. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

9.
Isotactic polypropylene-based graft copolymers linking poly(methyl methacrylate), poly(n-butyl acrylate) and polystyrene were successfully synthesized by a controlled radical polymerization with isotactic polypropylene (iPP) macroinitiator. The hydroxylated iPP, prepared by propylene/10-undecen-1-ol copolymerization with a metallocene/methyl-aluminoxane/triisobutylaluminum catalyst system, was treated with 2-bromoisobutyryl bromide to produce a Br-group containing iPP (PP-g-Br). The resulting PP-g-Br could initiate controlled radical polymerization of methyl methacrylate, n-butyl acrylate and styrene by using a copper catalyst system, leading to a variety of iPP-based graft copolymers with a different content of the corresponding polar segment. These graft copolymers demonstrated unique mechanical properties dependent upon the kind and content of the grafted polar segment.  相似文献   

10.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

11.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

12.
We report preliminary results for the synthesis of polyethylene‐graft‐poly(dimethylsiloxane) copolymers obtained by catalytic hydrogenation of polybutadiene‐graft‐poly(dimethylsiloxane) copolymers (PB‐g‐PDMS). These last copolymers were synthesized by hydrosilylation reactions between commercial polybutadiene and ω‐silane poly(dimethylsiloxane). The reaction was carried in solution catalyzed by cis‐dichloro bis(diethylsufide) platinum(II) salt. The PB‐g‐PDMS copolymers were analyzed by 1H and 13C NMR spectroscopies, and the relative weight percentages of the grafted poly(dimethylsiloxane) macromonomer were determined from the integrated peak areas of the spectra. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2920–2930, 2004  相似文献   

13.
Well‐defined multiarm star block copolymers poly(glycidol)‐b‐poly(methyl methacrylate) (PGOHBr‐b‐PMMAx) with an average number of PMMA arms of 85, 55, and 45 have been prepared. The core‐first approach has been selected as the methodology using atom transfer radical polymerization (ATRP) of MMA from an activated hyperbranched poly(glycidol) as the core. These activated hyperbranched macroinitiators were prepared by esterification of hyperbranched poly(glycidol) (PGOH) with 2‐bromoisobutyryl bromide. The effect of monomer/initiator ratio, catalyst concentration, time, temperature, and solvent on the growing of the arms has been studied in detail in order to optimize the process and to diminish the radical‐radical coupling. The final products and intermediates were characterized by means of size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) and Fourier transform‐infrared (FTIR) spectroscopy. The length of PMMA arms was determined by SEC after cleavage of ester bond linked to PGOH core. Glass transition temperature (Tg), thermal stability and rheological properties of the multiarm star copolymers were also studied. Finally, tapping mode atomic force microscopy (TMAFM) allowed the clear visualization of nano‐sized particles (80–200 nm) corresponding to individual star molecules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

16.
Two enantiomeric amphiphilic graft copolymers consisting of water soluble poly(2‐hydroxyethyl methacrylate) (HEMA) and biodegradable oligo(L ‐lactide) (OLLA) or oligo(D ‐lactide) (ODLA) were synthesized by free radical copolymerization. HEMA‐OL(D)LA macromonomers were synthesized by ring opening polymerization of L ‐ or D ‐lactide. Both HEMA‐OLA macromonomers and graft copolymers were characterized by NMR spectroscopy and gel permeation chromatography. Graft copolymers and their stereocomplexes were analyzed by wide angle X‐ray diffraction and differential scanning calorimetry (DSC). Due to the formation of stereocomplex crosslinks between poly(HEMA) main chains, amphiphilic, biodegradable hydrogels prepared by blending of two enantiomeric poly(HEMA‐g‐OLLA) and poly(HEMA‐g‐ODLA) degraded more slowly in phosphate buffered saline than individual optically pure poly‐(HEMA‐g‐OL(D)LA).  相似文献   

17.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

20.
New step‐growth graft block copolymers were synthesized. These two‐sided comb copolymers consisted of a poly(amic ester) (PAE) backbone and pendant poly(propylene oxide) (PPO) grafts. The copolymers were made via a macromonomer approach, in which the 4,6‐bischlorocarbonyl isophthalic acid bis[poly(propylene oxide)] ester macromonomer was synthesized through the reaction of hydroxyl‐terminated PPO oligomers with pyromellitic dianhydride and oxalyl chloride. This macromonomer was subsequently used in step‐growth polymerization with comonomers 4,6‐bischlorocarbonyl isophthalic acid diethyl ester, 2,5‐bischlorocarbonyl terephthalic acid diethyl ester, and 2,2‐bis[4‐ (4‐aminophenoxy)phenyl] hexafluoropropane, and this yielded PPO‐co‐PAE graft copolymers. Accordingly, we report the synthesis and characterization of the PPO oligomer, the PPO macromonomer, and their corresponding PPO‐co‐PAE graft copolymers. Graft copolymers with PPO concentrations of 3–26 wt % were synthesized. These polymers were thermally cured to produce polyimide/PPO composites. The thermolysis of these polyimide/PPO composites yielded porous polyimide films with porosities ranging of 4–22.5%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2266–2275, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号