首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report on the characterization of a novel hetero‐selective DNA‐like duplex of pyrene and anthraquinone pseudo base pairs. The pyrene/anthraquinone pairs showed excellent selectivity in hetero‐recognition and even trimers were found to form a hetero‐duplex. Pyrene and anthraquinone moieties were tethered on acyclic D ‐threoninol linkers and linked to adjacent residues by using standard phosphoramidite chemistry. When pyrene and anthraquinone were incorporated at pairing positions in complementary strands of natural DNA oligonucleotides, the duplex was stabilized significantly. Moreover, a pyrene hexamer and an anthraquinone hexamer formed a stable artificial hetero‐duplex without the assistance of natural base pairs. The pyrene/anthraquinone pair was so stable that even trimers formed a hetero‐duplex under conditions in which natural DNA strands of three residues do not.  相似文献   

2.
We have generated a novel silver(I)-mediated unnatural DNA base pair consisting of two 2,6-bis(ethylthiomethyl)pyridine nucleobases SPy. This metallo-base pair has a remarkably high pairing stability and selectivity which rivals that of the natural base pairs dA:dT and dC:dG. UV-melting experiments revealed that the dSPy:dSPy self-pair can replace natural base pairs at multiple sites and still form stable DNA duplexes.  相似文献   

3.
Pyrimidine base pairs in DNA duplexes selectively capture metal ions to form metal ion-mediated base pairs, which can be evaluated by thermal denaturation, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. In this critical review, we discuss the metal ion binding of pyrimidine bases (thymine, cytosine, 4-thiothymine, 2-thiothymine, 5-fluorouracil) in DNA duplexes. Thymine-thymine (T-T) and cytosine-cytosine (C-C) base pairs selectively capture Hg(II) and Ag(I) ions, respectively, and the metallo-base pairs, T-Hg(II)-T and C-Ag(I)-C, are formed in DNA duplexes. The metal ion binding properties of the pyrimidine-pyrimidine pairs can be changed by small chemical modifications. The binding selectivity of a metal ion to a 5-fluorouracil-5-fluorouracil pair in a DNA duplex can be switched by changing the pH of the solution. Two silver ions bind to each thiopyrimidine-thiopyrimidine pair in the duplexes, and the duplexes are largely stabilized. Oligonucleotides containing these bases are commercially available and can readily be applied in many scientific fields (86 references).  相似文献   

4.
Expansion of the genetic alphabet has been a long-time goal of chemical biology. A third DNA base pair that is stable and replicable would have a great number of practical applications and would also lay the foundation for a semisynthetic organism. We have reported that DNA base pairs formed between deoxyribonucleotides with large aromatic, predominantly hydrophobic nucleobase analogues, such as propynylisocarbostyril (dPICS), are stable and efficiently synthesized by DNA polymerases. However, once incorporated into the primer, these analogues inhibit continued primer elongation. More recently, we have found that DNA base pairs formed between nucleobase analogues that have minimal aromatic surface area in addition to little or no hydrogen-bonding potential, such as 3-fluorobenzene (d3FB), are synthesized and extended by DNA polymerases with greatly increased efficiency. Here we show that the rate of synthesis and extension of the self-pair formed between two d3FB analogues is sufficient for in vitro DNA replication. To better understand the origins of efficient replication, we examined the structure of DNA duplexes containing either the d3FB or dPICS self-pairs. We find that the large aromatic rings of dPICS pair in an intercalative manner within duplex DNA, while the d3FB nucleobases interact in an edge-on manner, much closer in structure to natural base pairs. We also synthesized duplexes containing the 5-methyl-substituted derivatives of d3FB (d5Me3FB) paired opposite d3FB or the unsubstituted analogue (dBEN). In all, the data suggest that the structure, electrostatics, and dynamics can all contribute to the extension of unnatural primer termini. The results also help explain the replication properties of many previously examined unnatural base pairs and should help design unnatural base pairs that are better replicated.  相似文献   

5.
As part of an effort to expand the genetic alphabet, we have evaluated a large number of predominantly hydrophobic unnatural base pairs. We now report the synthesis and stability of unnatural base pairs formed between simple phenyl rings modified at different positions with methyl groups. Surprisingly, several of the unnatural base pairs are virtually as stable as a natural base pair in the same sequence context. The results show that neither hydrogen-bonding nor large aromatic surface area are required for base pair stability within duplex DNA and that interstrand interactions between small aromatic rings may be optimized for both stability and selectivity. These smaller nucleobases are not expected to induce the distortions in duplex DNA or at the primer terminus that seem to limit replication of larger unnatural base pairs, and they therefore represent a promising approach to the expansion of the genetic alphabet.  相似文献   

6.
The stability and replication of DNA containing self-pairs formed between unnatural nucleotides bearing benzofuran, benzothiophene, indole, and benzotriazole nucleobases are reported. These nucleobase analogues are based on a similar scaffold but have different hydrogen-bond donor/acceptor groups that are expected to be oriented in the duplex minor groove. The unnatural base pairs do not appear to induce major structural distortions and are accommodated within the constraints of a B-form duplex. The differences between these unnatural base pairs are manifest only in the polymerase-mediated extension step, not in base-pair stability or synthesis. The benzotriazole self-pair is extended with an efficiency that is only 200-fold less than a correct natural base pair. The data are discussed in terms of available polymerase crystal structures and imply that further modifications may result in unnatural base pairs that can be both efficiently synthesized and extended, resulting in an expanded genetic alphabet.  相似文献   

7.
Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu(2+)-mediated base pair of hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the presence of equimolar Cu(2+) ions in comparison with a duplex containing an A-T pair in place of the H-H pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu(2+)-mediated base pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated temperature. In addition, EPR and CD studies suggested that the radical site of a Cu(2+) center is formed within the right-handed double-strand structure of the oligonucleotide. The present strategy could be developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.  相似文献   

8.
The electronic properties of several metal-modified Watson-Crick guanine-cytosine base pairs are investigated by means of first-principle density functional theory calculations. Focus is placed on a new structure recently proposed as a plausible model for building an antiparallel duplex with Zn-guanine-cytosine pairs, but we also inspect several other conformations and the incorporation of Ag and Cu ions. We analyze the effects induced by the incorporation of one metal cation per base pair by comparing the structures and the electronic properties of the metalated pairs to those of the natural guanine-cytosine pair, particularly for what concerns the modifications of energy levels and charge density distributions of the frontier orbitals. Our results reveal the establishment of covalent bonding between the metal cation and the nucleobases, identified in the presence of hybrid metal-guanine and metal-cytosine orbitals. Attachment of the cation can occur either at the N1 or the N7 site of guanine and is compatible with altering or not altering the H-bond pattern of the natural pair. Cu(II) strongly contributes to the hybridization of the orbitals around the band gap, whereas Ag(I) and Zn(II) give hybrid states farther from the band gap. Most metalated pairs have smaller band gaps than the natural guanine-cytosine pair. The band gap shrinking along with the metal-base coupling suggests interesting consequences for electron transfer through DNA double helices.  相似文献   

9.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

10.
Here, we present the solution structure of a DNA duplex containing a disulfide base pair (S-DNA). The unnatural nucleoside "S" possessing a thiophenyl group as base was incorporated into a self-complementary singled-stranded oligonucleotide. Crosslinking of the disulfide base pair was analyzed by non-denaturing polyacrylamide gel electrophoresis. Under oxidizing conditions a high molecular weight band as 18 mer, corresponding to the double-stranded molecule (5'-GCGASTCGC: 3'-CGCTSAGCG), was found, whereas single-stranded self-complementary 9 mer oligonucleotide GCGASTCGC was detected in the presence of a reducing agent. These results suggest that the oligonucleotide is covalently linked by disulfide bonding under oxidizing conditions, which can be reversibly reduced to two thiol groups under reducing conditions. CD spectrum of S-DNA (CGASTCG) under oxidizing conditions suggested that the duplex had a right-handed double-stranded structure similar to that of natural DNA (B-form, CGATCG). NMR studies confirmed that this CGASTCG resembled natural B-DNA and that the two phenyl rings derived from the disulfide base pairing intercalated into the duplex. However, these two phenyl rings were not positioned in the same plane as the other base pairs. Specifically, NOEs suggest that although CGASTCG adopts a structure similar to B-type DNA, the S-DNA duplex is bent at the point of disulfide base pairing to face the major groove.  相似文献   

11.
We have recently reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this context, we have accomplished a Ag(I)-mediated base pair or a base triplet in a double- or triple-stranded DNA, respectively, by introducing a pair of pyridine nucleobases in the middle of the sequence. As a result, the incorporated Ag(I) complex significantly stabilized the DNA duplex and triplex. This strategy would be expanded to the regulation of thermodynamic stability of DNA duplex or triplex by adding transition metal ions from outside, or to labeling applications in biotechnology.  相似文献   

12.
DNA--metal base pairs   总被引:1,自引:0,他引:1  
Recent developments show encouraging results for the use of DNA as a construction material for nanometer-sized objects. Today, however, DNA-based molecular nanoarchitectures are constructed with mainly unmodified or at best end-modified oligonucleotides, thus shifting the development of functionalized DNA structures into the limelight. One of most recent developments in this direction is the substitution of the canonical Watson-Crick base pairs by metal complexes. In this way "metal-base pairs" are created, which could potentially impart magnetic or conductive properties to DNA-based nanostructures. This review summarizes research which started almost 45 years ago with the investigation of how metal ions interact with unmodified DNA and which recently culminated in the development of artificial ligand-like nucleobases so far able to coordinate up to ten metal ions inside a single DNA duplex in a programmable fashion.  相似文献   

13.
We present the crystal structure of the DNA duplex formed by d(ATATATCT). The crystals contain seven stacked antiparallel duplexes in the asymmetric unit with A.T Hoogsteen base pairs. The terminal CT sequences bend over so that the thymines enter the minor groove and form a hydrogen bond with thymine 2 of the complementary strand in the Hoogsteen duplex. Cytosines occupy extra-helical positions; they contribute to the crystal lattice through various kinds of interactions, including a unique CAA triplet. The presence of thymine in the minor groove apparently contributes to the stability of the DNA duplex in the Hoogsteen conformation. These observations open the way toward finding under what conditions the Hoogsteen duplex may be stabilized in vivo. The present crystal structure also confirms the tendency of A.T-rich oligonucleotides to crystallize as long helical stacks of duplexes.  相似文献   

14.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

15.
Novel selective non-hydrogen-bonding DNA base pairs utilizing fluorinated nucleoside analogues have been investigated. Melting studies of DNA duplexes containing 2,3,4,5-tetrafluorobenzene and 4,5,6,7-tetrafluoroindole bases on opposite strands show greater stabilization of the duplex compared with nonfluorinated hydrocarbon controls. Overall, these hydrophobic analogues are destabilizing compared with natural base pairs but are stabilizing compared with natural base mismatches. Such selective pairing may be due to solvent avoidance of these hydrophobic structures, burying their surfaces within the duplex. Our findings suggest that polyfluoroaromatic bases might be employed as a new, selective base-pairing system orthogonal to the natural genetic system.  相似文献   

16.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability. When one molecule of the tricyclic nucleosides was incorporated into the center of each ODN (ODN I and II, each 17mer), no apparent specificity of base pairing was observed, and all duplexes were less stable than the duplexes containing natural G:C and A:T pairs. On the other hand, when three molecules of the tricyclic nucleosides were consecutively incorporated into the center of each ODN (ODN III and IV, each 17mer), thermal and thermodynamic stabilization of the duplexes due to the specific base pairings was observed. The melting temperature (T(m)) of the duplex containing the N(O):O(N) pairs showed the highest T(m) of 84.0 degrees C, which was 18.2 and 23.5 degrees C higher than that of the duplexes containing G:C and A:T pairs, respectively. This result implies that N(O)and O(N) form base pairs with four H-bonds when they are incorporated into ODNs. The duplex containing N(O):O(N) pairs was markedly stabilized by the assistance of the stacking ability of the imidazopyridopyrimidine bases. Thus, we developed a thermally stable new base pairing motif, which should be useful for the stabilization and regulation of a variety of DNA structures.  相似文献   

17.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

18.
Organization of supramolecular assemblies of chromophores with precisely-controlled orientation and sequence remains challenging. Nucleic acids with complementary base sequences spontaneously form double-helical structures. Therefore, covalent attachment of chromophores to DNA or RNA can be used to control assembly and orientation of chromophores. In this perspective, we first review our recent work on the assemblies of fluorophores (pyrene and perylene) by using natural base pairs. The interaction between dyes can be strictly controlled by means of cluster and interstrand wedge motifs. We then discuss novel artificial base pairs that can suppress the interaction between fluorophores and nucleobases. We incorporated a cyclohexane moiety into DNA, and showed that these artificial base pairs suppressed the electron-hole transfer between fluorophores and nucleobases and enhanced the quantum yields of fluorophores. These base pairs can potentially be used to accumulate fluorophores inside DNA duplexes without decreasing quantum yields.  相似文献   

19.
The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-->T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti-->syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti-->syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.  相似文献   

20.
A large amount of experimental evidence is available for the effects of magnesium ions on the structure and the stability of the DNA double helix. Less is known, however, on how these ions affect the dynamics of the molecule and the stability of each individual base pair. The present work addresses these questions by a study of the DNA duplex [dCGCAGATCTGCG]2, and its interactions with magnesium ions using nuclear magnetic resonance (NMR) spectroscopy and proton exchange. Two-dimensional NMR experiments indicate that binding of magnesium to this DNA duplex does not affect its structure. However, even in the absence of structural changes, magnesium ions specifically affect the exchange properties of imino protons in the four GC/CG base pairs that are located in the interior of the double helix. These specific changes do not result from alterations in the rates of spontaneous opening of these base pairs. Instead, the changes most likely reflect an enhancement in the energetic propensity for spontaneous opening of the GC/CG base pairs that is induced by the binding of magnesium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号