首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we present an upwind‐based high resolution scheme using flux limiters. Based on the direction of flow we choose the smoothness parameter in such a way that it leads to a truly upwind scheme without losing total variation diminishing (TVD) property for hyperbolic linear systems where characteristic values can be of either sign. Here we present and justify the choice of smoothness parameters. The numerical flux function of a high resolution scheme is constructed using wave speed splitting so that it results into a scheme that truly respects the physical hyperbolicity property. Bounds are given for limiter functions to satisfy TVD property. The proposed scheme is extended for non‐linear problems by using the framework of relaxation system that converts a non‐linear conservation law into a system of linear convection equations with a non‐linear source term. The characteristic speed of relaxation system is chosen locally on three point stencil of grid. This obtained relaxation system is solved using composite scheme technique, i.e. using a combination of proposed scheme with the conservative non‐standard finite difference scheme. Presented numerical results show higher resolution near discontinuity without introducing spurious oscillations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one and two‐dimensional convection–diffusion type differential equations with constant and variable convection coefficients. In the one‐dimensional case, the numerical scheme developed uses three points. For the two‐dimensional case, even though nine points are used, the successive line overrelaxation approach with alternating direction implicit procedure enables us to deal with tri‐diagonal systems. The methods are applied on a number of linear and non‐linear problems, mostly with large first derivative terms, in particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems, compared with the available results in the literature. Application of an exponential scheme with a non‐uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we present a total variation diminishing (TVD) scheme in the zero relaxation limit for nonlinear hyperbolic conservation law using flux limiters within the framework of a relaxation system that converts a nonlinear conservation law into a system of linear convection equations with nonlinear source terms. We construct a numerical flux for space discretization of the obtained relaxation system and modify the definition of the smoothness parameter depending on the direction of the flow so that the scheme obeys the physical property of hyperbolicity. The advantages of the proposed scheme are that it can give second‐order accuracy everywhere without introducing oscillations for 1‐D problems (at least with) smooth initial condition. Also, the proposed scheme is more efficient as it works for any non‐zero constant value of the flux limiter ? ? [0, 1], where other TVD schemes fail. The resulting scheme is shown to be TVD in the zero relaxation limit for 1‐D scalar equations. Bound for the limiter function is obtained. Numerical results support the theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
When low‐order finite‐difference methods are applied in large eddy simulation (LES), the magnitude of the numerical error may be larger than that of the subgrid‐scale (SGS) term. In this paper, the effect of explicit filtering on the numerical error related to the spatial discretization of the convection term and the exact SGS term is studied a priori in the turbulent fully developed channel flow. As the filter width is increased the grid resolution is kept constant. Also filtering in the inhomogeneous wall‐normal direction is discussed. The main conclusions are related to two approaches to explicit filtering. In the traditional approach, the whole velocity field is filtered explicitly while in the alternative approach, only the non‐linear convection term of the Navier–Stokes equations is filtered explicitly. Based on the results presented in the paper it seems that the first approach leads to an unphysical situation. However, the later approach works in the desired way, and the numerical error becomes clearly smaller than the SGS term. The main difference between the two approaches seems to be the interpretation of the resolved non‐linear term in the filtered Navier–Stokes equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A three‐dimensional, non‐hydrostatic pressure, numerical model with kε equations for small amplitude free surface flows is presented. By decomposing the pressure into hydrostatic and non‐hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step the momentum equations are solved without the non‐hydrostatic pressure term, using Newton's method in conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian matrix itself, limiting the amount of storage and significantly decreasing the overall computational time required. In the second step the pressure–Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements, transformed velocities are defined at cell faces by interpolating velocities at grid nodes. After the new pressure field is obtained, the intermediate velocities, which are calculated from the previous fractional step, are updated. The newly developed model is verified against analytical solutions, published results, and experimental data, with excellent agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A new approach for the solution of the steady incompressible Navier–Stokes equations in a domain bounded in part by a free surface is presented. The procedure is based on the finite difference technique, with the non‐staggered grid fractional step method used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. In order to design an effective free solution scheme, we distinguish between flows dominated by surface tension and those dominated by inertia and viscosity. When the surface tension effect is insignificant we used the kinematic condition to update the surface; whereas, in the opposite case, we used the normal stress condition to obtain the free surface boundary. Results obtained with the improved boundary conditions for a plane Newtonian jet are found to compare well with the available two‐dimensional numerical solutions for Reynolds numbers, up to Re=100, and Capillary numbers in the range of 0≤Ca<1000. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local RBF grid‐free upwind schemes based on the exact velocity direction are stable and produce accurate results on domains discretized even with scattered distribution of nodal points. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical technique is presented for the approximation of vertical gradient of the non‐hydrostatic pressure arising in the Reynolds‐averaged Navier–Stokes equations for simulating non‐hydrostatic free‐surface flows. It is based on the Keller‐box method that take into account the effect of non‐hydrostatic pressure with a very small number of vertical grid points. As a result, the proposed technique is capable of simulating relatively short wave propagation, where both frequency dispersion and non‐linear effects play an important role, in an accurate and efficient manner. Numerical examples are provided to illustrate this; accurate wave characteristics are already achieved with only two layers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Almost all evaluations of convection schemes reported in the literature are conducted using simple problems on uniform orthogonal grids; thus, having limited contribution when solving industrial computational fluid dynamics (CFD), where the grids are usually non‐orthogonal with distortions. Herein, several convection schemes are assessed in uniform and distorted non‐orthogonal grids with emphasis on industrial applications. Linear and nonlinear (TVD) convection schemes are assessed on analytical benchmarks in both uniform and distorted grids. To evaluate the performance of the schemes, four error metrics are used: dissipation, phase and L1 errors, and the schemes' effective order of accuracy. Qualitative and quantitative deterioration of these error metrics as a function of the grid distortion metrics are investigated, and rigorous verifications are performed. Recommendations for effective use of the convection schemes based on the range of grid aspect ratio (AR), expansion ratio (ER) and skewness (Q) are included. A ship hydrodynamics case is studied, involving a Reynolds averaged Navier–Stokes simulation of a bare‐hull KVLCC2 tanker using linear and nonlinear convection schemes coupled with isotropic and anisotropic Reynolds‐stress (ARS) turbulence models using CFDShip‐Iowa v4. Predictions of local velocities and turbulent quantities from the midships to the nominal wake plane are compared with experimental fluid dynamics (EFD), and rigorous verification and validation analyses for integral forces and moments are performed for 0° and 12° drift angles. Best predictions are observed when coupling a second‐order TVD scheme with the anisotropic turbulence model. Further improvements are observed in terms of prediction of the vortical structures for 30° drift when using TVD2S‐ARS coupled with DES. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Based on a priori tests, in large eddy simulation (LES) of turbulent fluid flow, the numerical error related to low‐order finite‐difference‐type methods can be large in comparison with the effect of subgrid‐scale (SGS) model. Explicit filtering has been suggested to reduce the error, and it has shown promising results in a priori studies and in some simulations with fourth‐order method. In this paper, the effect of explicit filtering on the total simulation error is studied together with a second‐order scheme, where the numerical error should be even larger. The fully developed turbulent channel flow between two parallel walls is used as a test case. Rather simple SGS models are applied, because these models are most likely used in practical applications of LES. Explicit filtering is here applied to the non‐linear convection term of the Navier–Stokes equations, four three‐dimensional filter functions are applied, and the effect of filtering is separated from the effect of SGS modelling. It is shown that the effect of filtering is rather large and smooth filters introduce an additional error component that increases the total simulation error. Finally, filtering via subfilter‐scale modelling is applied, and it is shown that this approach performs better. However, the large‐frequency components of the resolved flow field are not as effectively damped as when the non‐linear convection term is filtered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a conservative, positivity‐preserving, high‐resolution nonlinear ALE‐flux‐corrected transport (FCT) scheme for reactive transport models in moving domains. The mathematical model is a convection–diffusion equation with a nonlinear flux equation on the moving channel wall. The reactive transport is assumed to have dominant Péclet and Damköhler numbers, a phenomenon that often results in non‐physical negative solutions. The scheme presented here is proven to be mass conservative in time and positive at all times for a small enough Δt. Reactive transport examples are simulated using this scheme for its validation, to show its convergence, and to compare it against the linear ALE‐FCT scheme. The nonlinear ALE‐FCT is shown to perform better than the linear ALE‐FCT schemes for large time steps. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号