首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
Details are given of the development of a two‐dimensional vertical numerical model for simulating unsteady free‐surface flows, using a non‐hydrostatic pressure distribution. In this model, the Reynolds equations and the kinematic free‐surface boundary condition are solved simultaneously, so that the water surface elevation can be integrated into the solution and solved for, together with the velocity and pressure fields. An efficient numerical algorithm has been developed, deploying implicit parameters similar to those used in the Crank–Nicholson method, and generating a block tri‐diagonal algebraic system of equations. The model has been applied to simulate a range of unsteady flow problems involving relatively strong vertical accelerations. The results show that the numerical algorithm described is able to produce accurate predictions and is also easy to apply. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In cities, flood waves may propagate over street surfaces below which lie complicated pipe networks used for storm drainage and sewage. The flood and pipe flows can interact at connections between the underground pipes and the street surface. The present paper examines this interaction, using the shallow water equations to model the flood wave hydrodynamics. Sources and sinks in the mass conservation equation are used to model the pipe inflow and outflow conditions at bed connections. We consider the problem reduced to one dimension. The shallow water equations are solved using a Godunov‐type wave propagation scheme. Wave speeds are modified in the wave propagation algorithm to enable flows to be simulated over nearly dry beds and dry states. First, the model is used to simulate vertical flows through finite gaps in the bed. Next, the interaction of the vertical flows with a dam break flow is considered for both dry and wet beds. An efflux number, En, is defined based on the vertical efflux velocity and the gap length. Comparisons are made with numerical predictions from STAR‐CD, a commercial Navier–Stokes solver that models the free‐surface motions, and a parameter study is undertaken to investigate the effect of the one‐dimensional approximation of the present model, for a range of non‐dimensional efflux numbers. It is found that the shallow flow model gives sensible predictions at all time provided En<0.5, and for long durations for En>0.5. Dam break flow over an underground connecting pipe is also considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A fully coupled two‐dimensional subcritical and/or supercritical, viscous, free‐surface flow numerical model is developed to calculate bed variations in alluvial channels. Vertically averaged free‐surface flow equations in conjunction with sediment transport equation are numerically solved using an explicit finite‐volume scheme using transformed grid in order to handle complex geometry fluvial problems. Convergence is accelerated with use of a multi‐grid technique. Firstly the capabilities of the proposed method are demonstrated by analyzing subcritical and supercritical hydrodynamic flows. Thereafter, an analysis of one‐ and two‐dimensional flows is performed referring to aggradation and scouring. For all reported test cases the computed results compare reasonably well with measurements as well as with other numerical solutions. The method is stable, reliable and accurate handling a variety of sediment transport equations with rapid changes of sediment transport at the boundaries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
A mathematical model was developed for three‐dimensional (3‐D) simulation of free surface flows. In this model, the flow depth is divided into a number of layers and shallow water equations are integrated in each layer to derive the hydrodynamic equations. To give a general form to this model, each layer is assumed to be non‐horizontal with varying thickness in the flow domain. A non‐orthogonal curvilinear coordinate system is employed in the model, to allow for flexibility in dealing with the irregular geometry of natural watercourses. Due to the similarity in governing equations, two‐dimensional (2‐D) depth averaged programs can be developed into a multi‐layer model. The development for a depth averaged program and its numerical scheme is described in this paper. Experimental data and semi‐analytical solutions are used to evaluate the performance of the model. Three different cases of open channel flow are tested: 1‐flow in a straight open channel, 2‐the flow development region in a channel, and 3‐flow in a meandering channel. It is shown that the model has the capability to predict velocity distribution and secondary flows in complex 3‐D flow conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A two‐dimensional quadrilateral spectral multidomain penalty method (SMPM) model has been developed for the simulation of high Reynolds number incompressible stratified flows. The implementation of higher‐order quadrilateral subdomains renders this model a nontrivial extension of a one‐dimensional subdomain SMPM model built for the simulation of the same type of flows in vertically nonperiodic domains (Diamessis et al., J. Comp. Phys, 202 :298‐322, 2005). The nontrivial aspects of this extension consist of the implementation of subdomain corners, the penalty formulation of the pressure Poisson equation (PPE), and, most importantly, the treatment of specific challenges that arise in the iterative solution of the SMPM‐discretized PPE. The two primary challenges within the framework of the iterative solution of the PPE are its regularization to ensure the consistency of the associated linear system of equations and the design of an appropriate two‐level preconditioner. A qualitative and quantitative assessment of the accuracy, efficiency, and stability of the quadrilateral SMPM solver is provided through its application to the standard benchmarks of the Taylor vortex, lid‐driven cavity, and double shear layer. The capacity of the flow solver for the study of environmental stratified flow processes is shown through the simulation of long‐distance propagation of an internal solitary wave of depression in a manner that is free of numerical dispersion and dissipation. The methods and results presented in this paper make it a point of reference for future studies oriented toward the reliable application of the quadrilateral SMPM model to more complex environmental stratified flow process studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A computational method is proposed to simulate 3D unsteady cavitating flows in spatial turbopump inducers. It is based on the code FineTurbo, adapted to take into account two‐phase flow phenomena. The initial model is a time‐marching algorithm devoted to compressible flow, associated with a low‐speed preconditioner to treat low Mach number flows. The presented work covers the 3D implementation of a physical model developed in LEGI for several years to simulate 2D unsteady cavitating flows. It is based on a barotropic state law that relates the fluid density to the pressure variations. A modification of the preconditioner is proposed to treat efficiently as well highly compressible two‐phase flow areas as weakly compressible single‐phase flow conditions. The numerical model is applied to time‐accurate simulations of cavitating flow in spatial turbopump inducers. The first geometry is a 2D Venturi type section designed to simulate an inducer blade suction side. Results obtained with this simple test case, including the study of its general cavitating behaviour, numerical tests, and precise comparisons with previous experimental measurements inside the cavity, lead to a satisfactory validation of the model. A complete three‐dimensional rotating inducer geometry is then considered, and its quasi‐static behaviour in cavitating conditions is investigated. Numerical results are compared to experimental measurements and visualizations, and a promising agreement is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Two‐phase immiscible fluids in a two‐dimensional micro‐channels network are considered. The incompressible Stokes equations are used to describe the Newtonian fluid flow, while the Oldroyd‐B rheological model is used to capture the viscoelastic behavior. In order to perform numerical simulations in a complex geometry like a micro‐channels network, the volume penalization method is implemented. To follow the interface between the two fluids, the level‐set method is used, and the dynamics of the contact line is modeled by Cox law. Numerical results show the ability of the method to simulate two‐phase flows and to follow properly the contact line between the two immiscible fluids. Finally, simulations with realistic parameters are performed to show the difference when a Newtonian fluid is pushed by a viscoelastic fluid instead of a Newtonian one. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, a corrected symmetric and periodic density reinitialized SPH (CSPDR‐SPH) method is proposed and extended to simulate the viscoelastic free surface flows based on the Phan–Thien–Tanner model. The improvements mainly lie in deriving a corrected symmetric kernel gradient, and combining it with a periodic density reinitialization procedure. In addition, a simple artificial viscosity and a simple artificial stress form are adopted. Thus, the CSPDR‐SPH method has higher accuracy and better stability than the SPH method, and conserves both linear and angular momentums. The consistency and convergence of the CSPDR‐SPH method are justified by approximating a function in one and two dimensions. The merits of CSPDR‐SPH method are demonstrated by several benchmarks. The simple flow in a two‐dimensional channel is investigated to show the capability of the CSPDR‐SPH method to simulate the viscoelastic free surface flow. Then the CSPDR‐SPH method is extended to simulate the impacting drop problem. Numerical results show that the CSPDR‐SPH method can precisely capture the viscoelastic free surface. The Reynolds number, Weissenberg number and elongation parameter have remarkable effect on the flows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper applies the higher‐order bounded numerical scheme Weighted Average Coefficients Ensuring Boundedness (WACEB) to simulate two‐ and three‐dimensional turbulent flows. In the scheme, a weighted average formulation is used for interpolating the variables at cell faces and the weighted average coefficients are determined from a normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of the solution. The scheme is applied to two turbulent flow problems: (1) two‐dimensional turbulent flow around a blunt plate; and (2) three‐dimensional turbulent flow inside a mildly curved U‐bend. In the present study, turbulence is evaluated by using a low‐Reynolds number version of the k–ω model. For the flow simulation, the QUICK scheme is applied to the momentum equations while either the WACEB scheme (Method 1) or the UPWIND scheme (Method 2) is used for the turbulence equations. The present study shows that the WACEB scheme has at least second‐order accuracy while ensuring boundedness of the solutions. The present numerical study for a pure convection problem shows that the ‘TVD’ slope ranges from 2 to 4. For the turbulent recirculating flow, two different mixed procedures (Method 1 and Method 2) produce a substantial difference for the mean velocities as well as for the turbulence kinetic energy. Method 1 predicts better results than Method 2 does, comparing the analytical solution and the experimental data. For the turbulent flow inside the mildly curved U‐bend, although the predictions of velocity distributions with two procedures are very close, a noticeable difference of turbulence kinetic energy is exhibited. It is noticed that the discrepancy exists between numerical results and the experimental data. The reason is the limit of the two‐equation turbulence model to such complex turbulent flows with extra strain‐rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper demonstrates that a numerical method based on the generalized simplified marker and cell (GENSMAC) flow solver and Youngs' volume of fluid (Y‐VOF) surface‐tracking technique is an effective tool for studying the basic mechanics of hydraulic engineering problems with multiple free surfaces and non‐hydrostatic pressure distributions. Two‐dimensional flow equations in a vertical plane are solved numerically for this purpose. The numerical results are compared with experimental data and earlier numerical results based on a higher‐order depth‐averaged flow model available in the literature. Two classical problems, (i) flow in a free overfall and (ii) flow past a floor slot, are considered. The numerical results correspond very well with the experimental data for both sub‐critical and supercritical flows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号