首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The conducto‐convective heat loss from a viscoelastic liquid, in the core of a double‐pipe heat exchanger arrangement, to a cooler Newtonian fluid flowing in the outer annulus is investigated with direct numerical simulations. A numerical algorithm based on the finite difference method is implemented in time and space with the Giesekus constitutive model for the viscoelastic liquids. The flow of both the annulus and core‐fluids is considered to be Poiseuille flow, driven by respective pressure gradients. In general, the results show that a viscoelastic core‐fluid leads to slightly lower (albeit comparable) attainable temperatures in the core‐fluid stream as compared with a corresponding Newtonian fluid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A Galerkin/finite element and a pseudo‐spectral method, in conjunction with the primitive (velocity‐pressure) and streamfunction‐vorticity formulations, are tested for solving the two‐phase flow in a tube, which has a periodically varying, circular cross section. Two immiscible, incompressible, Newtonian fluids are arranged so that one of them is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). The physical and flow parameters are such that the interface between the two fluids remains continuous and single‐valued. This arrangement is usually referred to as Core‐Annular flow. A non‐orthogonal mapping is used to transform the uneven tube shape and the unknown, time dependent interface to fixed, cylindrical surfaces. With both methods and formulations, steady states are calculated first using the Newton–Raphson method. The most dangerous eigenvalues of the related linear stability problem are calculated using the Arnoldi method, and dynamic simulations are carried out using the implicit Euler method. It is shown that with a smooth tube shape the pseudo‐spectral method exhibits exponential convergence, whereas the finite element method exhibits algebraic convergence, albeit of higher order than expected from the relevant theory. Thus the former method, especially when coupled with the streamfunction‐vorticity formulation, is much more efficient. The finite element method becomes more advantageous when the tube shape contains a cusp, in which case the convergence rate of the pseudo‐spectral method deteriorates exhibiting algebraic convergence with the number of the axial spectral modes, whereas the convergence rate of the finite element method remains unaffected. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical methodologies for computer simulations of two‐fluid flows are presented. These methodologies fall into the category of volume tracking methods with piecewise‐linear interface calculation (PLIC). The scope of this work is limited to laminar flows of immiscible, non‐reacting, incompressible Newtonian fluids, without phase change, in planar two‐dimensional geometries. The following novel or enhanced procedures are proposed: a parallelogram scheme for multidimensional advection of the volume‐fraction field; a circle‐fit technique for the orientation of the interface segments and the calculation of curvature; a novel contact angle treatment; and a staggered formulation for volumetric body forces that can accurately balance pressure forces in the vicinity of the interface. In addition, surface‐tension‐derived and hydrostatic‐derived pressure adjustments are introduced as a means of accurately calculating pressure forces in cells that contain the interface, so as to minimize the non‐physical flows that afflict many available volume tracking methods. The proposed method is validated using four test problems that involve simulations of pure advection, a static drop, an oscillating bubble, and a static meniscus. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Dissipative particle dynamics (DPD)‐based models for two‐phase flows are attractive for simulating fluid flow at the sub‐micron level. In this study, we extend a DPD‐based two‐phase model for a single‐component fluid to a two‐component fluid. The approach is similar to that employed in the DPD formulation for two immiscible liquids. Our approach allows us to control the density ratio of the liquid phase to the gas phase, which is represented independently by the two components, without changing the temperature of the liquid phase. To assess the accuracy of the model, we carry out simulations of Rayleigh–Taylor instability and compare the penetration rates of the spikes and bubbles formed during the simulations with prior results reported in the literature. We show that the results are in agreement with both experimental data and predictions from Youngs' model. We report these results for a broad range of Atwood numbers to illustrate the capability of the model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper applies the finite‐volume method to computations of steady flows of viscous and viscoelastic incompressible fluids in complex two and three‐dimensional geometries. The materials adopted in the study obey different constitutive laws: Newtonian, purely viscous Carreau–Yasuda as also Upper‐Convected Maxwell and Phan‐Thien/Tanner differential models, with a Williams–Landel–Ferry (WLF) equation for temperature dependence. Specific analyses are made depending on the rheological model. A staggered grid is used for discretizing the equations and unknowns. Stockage possibilities allow us to solve problems involving a great number of degrees of freedom, up to 1 500 000 unknowns with a desk computer. In relation to the fluid properties, our numerical simulations provide flow characteristics for various 2D and 3D configurations and demonstrate the possibilities of the code to solve problems involving complex nonlinear constitutive equations with thermal effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The present work is devoted to the study on unsteady flows of two immiscible viscous fluids separated by free moving interface. Our goal is to elaborate a unified strategy for numerical modelling of two‐fluid interfacial flows, having in mind possible interface topology changes (like merger or break‐up) and realistically wide ranges for physical parameters of the problem. The proposed computational approach essentially relies on three basic components: the finite element method for spatial approximation, the operator‐splitting for temporal discretization and the level‐set method for interface representation. We show that the finite element implementation of the level‐set approach brings some additional benefits as compared to the standard, finite difference level‐set realizations. In particular, the use of finite elements permits to localize the interface precisely, without introducing any artificial parameters like the interface thickness; it also allows to maintain the second‐order accuracy of the interface normal, curvature and mass conservation. The operator‐splitting makes it possible to separate all major difficulties of the problem and enables us to implement the equal‐order interpolation for the velocity and pressure. Diverse numerical examples including simulations of bubble dynamics, bifurcating jet flow and Rayleigh–Taylor instability are presented to validate the computational method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we propose a simple area‐preserving correction scheme for two‐phase immiscible incompressible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity and mass density, and gravitational force effects. The principal advantage of the IBM for two‐phase fluid flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on the interface. However, because the interface between two fluids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the interface location normally to the interface so that the area remains constant. Various numerical experiments are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two‐phase fluid flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
An immiscible liquid–liquid multiphase flow in a cross‐junction microchannel was numerically studied using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step was replaced by the anti‐diffusion scheme in the mixed region to reduce the side‐effect and control the thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace's law and spurious velocities were examined. The results show that our model is more advantageous for simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results of multiphase flow in a cross‐junction microchannel were obtained and analyzed based on dimensionless numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux. However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation. For this case, the flow is determined by both the capillary number and the Weber number. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an analytical Buckley-Leverett-type solution for one-dimensibnal immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase saturation. To apply this method to field problems a practical procedure has been developed which is based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be regarded as an extension of the Buckley-Leverett method to Non-Newtonian fluids. The analytical result reveals how the saturation profile and the displacement efficiency are controlled not only by the relative permeabilities, as in the Buckley-Leverett solution, but also by the inherent complexities of the non-Newtonian fluid. Two examples of the application of the solution are given. One application is the verification of a numerical model, which has been developed for simulation of flow of immiscible non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a power-law non-Newtonian fluid.  相似文献   

11.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Governing equations for a two‐phase 3D helical pipe flow of a non‐Newtonian fluid with large particles are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model solid particle trajectories. The interaction between solid particles and the fluid that carries them is accounted for by a source term in the momentum equation for the fluid. The force‐coupling method (FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term is no longer a Dirac delta function but is spread on a numerical mesh by using a finite‐sized envelop with a spherical Gaussian distribution. The influence of inter‐particle and particle–wall collisions is also taken into account. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study an interface transport scheme of a two‐phase flow of an incompressible viscous immiscible fluid. The problem is discretized by the characteristics method in time and finite elements method in space. The interface is captured by the level set function. Appropriate boundary conditions for the problem of mold filling are investigated, a new natural boundary condition under pressure effect for the transport equation is proposed, and an algorithm for computing the solution is presented. Finally, numerical experiments show and validate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A coupled Lagrangian interface‐tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two‐fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle‐based Lagrangian re‐initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface‐moving’ problems and two‐fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle‐level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle‐level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable‐density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of viscoelastic fluid flow in a convergent-divergent channel is considered. A mathematical model and the results of numerical investigations are presented. A model of the differential type is used to describe the rheological properties of viscoelastic fluids. A comparative analysis of the flow parameters of generalized Newtonian and viscoelastic fluids in the channels considered is carried out on the basis of the results of numerical calculations.  相似文献   

17.
A numerical method for the simulation of compressible two‐phase flows is presented in this paper. The sharp‐interface approach consists of several components: a discontinuous Galerkin solver for compressible fluid flow, a level‐set tracking algorithm to follow the movement of the interface and a coupling of both by a ghost‐fluid approach with use of a local Riemann solver at the interface. There are several novel techniques used: the discontinuous Galerkin scheme allows locally a subcell resolution to enhance the interface resolution and an interior finite volume Total Variation Diminishing (TVD) approximation at the interface. The level‐set equation is solved by the same discontinuous Galerkin scheme. To obtain a very good approximation of the interface curvature, the accuracy of the level‐set field is improved and smoothed by an additional PNPM‐reconstruction. The capabilities of the method for the simulation of compressible two‐phase flow are demonstrated for a droplet at equilibrium, an oscillating ellipsoidal droplet, and a shock‐droplet interaction problem at Mach 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A characteristic equation is derived that describes the spatial decay of linear surface gravity waves on Maxwell fluids. Except at small frequencies, the derived dispersion relation is different from the temporal decay dispersion relation which is normally studied within fluid mechanics. The implications for waves on viscous Newtonian fluids using the two different dispersion relations is briefly discussed. The wave number is measured experimentally as function of the frequency in a horizontal canal. Seven Newtonian fluids and four viscoelastic liquids with constant viscosity have been used in the experiments. The spatial decay theory for Newtonian fluids fits well to the experimental data. The model and experiments are used to determine limits for the Maxwell fluid time numbers for the four viscoelastic liquids. As a result of low viscosity it was not possible within this study to obtain these time numbers from oscillatory experiments. Therefore, a comparison of surface gravity wave experiments with theory is applicable as a method to evaluate memory times of low viscosity viscoelastic fluids.  相似文献   

19.
This work is concerned with the numerical simulation of two‐dimensional viscoelastic free surface flows of a second‐order fluid. The governing equations are solved by a finite difference technique based on the marker‐and‐cell philosophy. A staggered grid is employed and marker particles are used to represent the fluid free surface. Full details for the approximation of the free surface stress conditions are given. The resultant code is validated and convergence is demonstrated. Numerical simulations of the extrudate swell and flow through a planar 4:1 contraction for various values of the Deborah number are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Hemodynamic stresses are involved in the development and progression of vascular diseases. This study investigates the influence of mechanical factors on the hemodynamics of the curved coronary artery in an attempt to identify critical factors of non‐Newtonian models. Multiphase non‐Newtonian fluid simulations of pulsatile flow were performed and compared with the standard Newtonian fluid models. Different inlet hematocrit levels were used with the simulations to analyze the relationship that hematocrit levels have with red blood cell (RBC) viscosity, shear stress, velocity, and secondary flow. Our results demonstrated that high hematocrit levels induce secondary flow on the inside curvature of the vessel. In addition, RBC viscosity and wall shear stress (WSS) vary as a function of hematocrit level. Low WSS was found to be associated with areas of high hematocrit. These results describe how RBCs interact with the curvature of artery walls. It is concluded that although all models have a good approximation in blood behavior, the multiphase non‐Newtonian viscosity model is optimal to demonstrate effects of changes in hematocrit. They provide a better stimulation of realistic blood flow analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号