首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal behaviors of 11-layer Langmuir–Blodgett (LB) films of the double long-chain compounds of octadecylammonium laurate (ODALA), octadecylammonium octadecanoate (ODASA) and octadecylammonium tetracosanoate (ODATA) have been investigated by Fourier transform infrared spectroscopy. The temperature-dependent infrared spectra show that thermal stability of the three kinds of LB films depends upon the length of the hydrocarbon chain. The LB film of ODALA undergoes an order–disorder transition in the temperature range of 50–65 °C. In contrast, the ODATA LB film has the phase transition temperature range of 80–90 °C. Of particular interest is that both ODASA and ODATA LB films have nearly the same phase transition temperature range of 80–90 °C, indicating that the replacement between tetracosanoic acid and stearic acid has little effect on the thermal stability of the two compounds. The above observations suggest that the effective length of the alkyl chains, which is determined by the component with a shorter chain in the double long-chain compounds, has a dominant influence on the thermal stability. It is very likely that the whole chain of the shorter chain component such as octadecylamine in ODATA has contribution to the thermal stability while only the effective length of the longer alkyl chain component gives a significant effect.  相似文献   

2.
Mesoporous anatase was prepared following sol–gel and using urea as template. The influence of calcination temperature on the phase stability, nanocrystal/aggregate size, pore size distribution and specific surface area as well as on the acid–base behavior in aqueous solutions was studied using X-ray diffraction, laser-Raman and diffuse reflectance spectroscopies, scanning electron microscopy and laser scattering as well as N2 adsorption–desorption isotherms and potentiometric mass titrations.The crystal structure was kept constant upon calcination over the whole temperature range, 200–500 °C. In this range anatase is constituted from primary nanocrystals. These are assembled into larger, rather spherical, clusters of about 30–40 nm and then into aggregates of various sizes (0.2–0.3 μm and 2–100 μm) with a distribution centered at about 12 μm. Increase of the calcination temperature caused an increase in the size of the primary nanocrystals from 8.1 nm at 200 °C to 17.1 nm at 500 °C, whereas calcination does not influence the morphology at micro-scale. Moreover, increase of the calcination temperature from 200 °C to 500 °C brings about a shift in the mean pore diameter from 47 nm to 91 nm accompanied by a decrease in the specific surface area and pore volume. The above effects were related with the aforementioned increase in the size of the primary nanocrystals. The value of pzc and the values of surface charge determined at various pH do not practically depend on the calcination temperature. The absence of pore space confinement effects was explained in terms of the structure and size of the interface development between the anatase surface and the electrolytic solution.  相似文献   

3.
Thermogravimetric analyzer (TGA) has been applied to measure the kinetics of the thermal degradation of virgin polyvinylpyrrolidone (PVP) and a phase stabilized PVP–ammonium nitrate (AN) material. The PVP–AN samples have been prepared by using 20 wt.% of AN and PVP of three different molecular weights. Virgin PVP undergoes a major mass loss in the region 380–550 °C leaving a small amount of nonvolatile residue. The application of an advanced isoconversional method to the respective degradation process demonstrates that its effective activation energy increases from 70 kJ mol−1 to a plateau value at 250–300 kJ mol−1, which is independent of the molecular weight. The PVP–AN materials lose spontaneously 20% of their mass on heating above the glass transition temperature of the PVP matrix (160–180 °C). After the escape of AN, the remaining PVP matrix degrades in the same temperature region as virgin PVP, however, the effective activation energy of this degradation is 150–200 kJ mol−1.  相似文献   

4.
To continuously obtain biodiesel of high purity, a membrane separator integrated with liquid–liquid extraction for the oil–FAME–MeOH system is studied. The liquid–liquid phase equilibrium data for the oil–FAME–MeOH are determined experimentally and compared with the general prediction of the modified UNIFAC. The tie line test demonstrates that composition of the methanol-rich phase is free of TG at 20 °C. Using the continuous cross-flow ultrafiltration, the oil-rich phase can be rejected by the ceramic membranes while the methanol-rich phase permeates through the membranes. When the feed bulk composition is controlled within the two-phase zone, such as the oil:FAME:MeOH of 20:30:50 wt.%, the permeate is found to be free of oil while the obtained permeate flux is higher than 300 kg/m2 h under the transmembrane pressure of 600 mmHg and the inlet flow rate of 300 ml/min at 20 °C. By contrast, it shows almost no separation when the inlet concentration of oil–FAME–MeOH locates on its boundary line or within the single-phase zone. The quantitative filtration tests show that the compositions in the two liquid phases and the operating parameters are also considered simultaneously to screen the origin oil and get the FAME product of high purity.  相似文献   

5.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

6.
A simple copolymer, poly(NIPAM-co-RD), consisting of N-isopropylacrylamide (NIPAM) and rhodamine (RD) units, behaves as a fluorescent temperature sensor exhibiting selective fluorescence enhancement at a specific temperature range (25–40 °C) in water. This is driven by a heat-induced phase transition of the polymer from coil to globule. At low temperature, the polymer exists as a polar coil state and shows very weak fluorescence. At >25 °C, the polymer weakly aggregates and forms a less polar domain within the polymer, leading to fluorescence enhancement. However, at >33 °C, strong polymer aggregation leads to a formation of huge polymer particles, which suppresses the incident light absorption by the RD units and shows very weak fluorescence. In the present work, effects of polymer concentration and type of acrylamide unit in the polymer have been investigated. The increase in the polymer concentration in water leads to a formation of less polar domain even at low temperature and, hence, widens the detectable temperature range to lower temperature. Addition of N-n-propylacrylamide (NNPAM) or N-isopropylmethacrylamide (NIPMAM) component to the polymer, which has lower or higher phase transition temperature than that of NIPAM, enables the aggregation temperature of the polymer to shift. This then shifts the detectable temperature region to lower or higher temperature.  相似文献   

7.
The hybrid copper–chlorine (Cu–Cl) thermo/electrochemical cycle for decomposing water into its constituents is a novel method for hydrogen production. The process involves a series of closed-loop chemical reactions. The cycle is assumed driven in an environmentally benign manner using nuclear energy. The cycle involves five steps of which three are thermally driven chemical reactions and one has an electrochemical reaction. In the present study, the electrochemical reaction, copper (Cu) production step, is described with its operational and environmental conditions, and analyzed thermodynamically. Various parametric studies are carried out on energetic and exergetic aspects of the step, considering variable reaction and reference-environment temperatures. At a reaction temperature of 45 °C, the reaction heat of the Cu production step is 140,450 kJ/kmol H2. At a constant reaction temperature of 45 °C, the exergy destruction of the step varies between 50 kJ/kmol H2 and 7000 kJ/kmol H2 when the reference-environment temperature increases from 0 °C to 30 °C. At a reaction temperature of 45 °C and a reference-environment temperature of 25 °C, the exergy efficiency of this step is 99% and decreases with increasing reference-environment and/or reaction temperatures.  相似文献   

8.
A process to prepare microparticles of narrow size distribution having a particle size in the range of approximately 1–8 μm was developed. The primary objective of this work was to study the formation and morphology of copolyester microparticles prepared using a sulfonated copolyester emulsion by an emulsion–aggregation process. Molecular weight of the copolyesters was measured by gel permeation chromatography. The glass transition temperature (Tg) of the copolyesters was found to be in the range of 40–70 °C. Aggregating agents used in this study were 1–5% (wt.%) solutions of divalent ions of zinc acetate and magnesium chloride salts. Emulsion–aggregation experiments were performed at various temperatures: 40, 50, 60, and 80 °C. Particle morphologies studied by field emission-scanning electron microscopy measurements provided an understanding of the conditions and mechanism leading to formation of microparticles by the emulsion–aggregation process. Molecular weight and Tg of the copolyester, the concentration of aggregating agent, and the temperature were determined to be the most important parameters influencing the preparation of microparticles. This process illustrates the preparation of microparticles of uniform size with morphology of controlled shape from a nanometer-sized emulsion by ionic crosslinking.  相似文献   

9.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

10.
The phase relations in the Fe-rich part of the pseudo-binary system SrO–Fe2O3 (>33 mol% Fe2O3) were reinvestigated between 800 and 1500 °C in air. A combination of microscopy, electron probe micro-analysis, powder X-ray diffraction and thermal analysis was used to determine phase relations, crystal structure parameters and phase transition temperatures. M-type hexagonal ferrite SrFe12O19 (85.71 mol% Fe2O3) is stable up to 1410 °C. No indication of a significant phase width was found; Sr4Fe6O13±δ appears as a second phase in compositions with <85.71±0.2 mol% Fe2O3. Sr4Fe6O13±δ itself is stable between 800 and 1250 °C. Two other hexagonal ferrites were found to exist at high temperatures only: W-type SrFe2+2Fe3+16O27 is stable between 1350 and 1440 °C and X-type ferrite Sr2Fe2+2Fe3+28O46 between 1350 and 1420 °C, respectively, which is shown here for the first time. These findings in combination with previously published data were used to derive a corrected phase diagram of the Fe-rich part of the pseudo-binary system SrO–Fe2O3.  相似文献   

11.
Several non-random lipid mixtures have been proposed as models of lipid plasma membrane, as they mimic the ability of biomembranes to form lateral domains. Biological membranes are characterised by a succession of localised transient steady-state lipid organisations rather than stable equilibria. This suggests that several quasi at-equilibrium lipid organisations may exist at different times in the same local patch of membranes. Identification of the conditions which can mimic heterogeneous dynamic membrane states in a lipid membrane model is a challenge. This is of particular importance as the lateral organisation of lipids mixtures in fully equilibrated samples may differ from the arrangement found in quasi at-equilibrium conditions. To address this issue, we have performed a real-time synchrotron X-ray diffraction study in ternary mixtures of egg-phosphatidylcholine/egg-sphingomyelin and cholesterol using a 0.5 °C/15 s step within a 20–50–20 °C thermal cycle. In the present study, all ternary mixtures displayed lamellar phase separation. A d-spacing value was observed reversibly during the heating and cooling scan for each of the two coexisting phases. In mixtures with a cholesterol concentration from 20 to 50 mol%, a liquid-ordered (Lo) and liquid-disordered (Ld) phase separation was observed in the 20–50 °C thermal range. These results are discussed in terms of a specific interaction between lipid molecular aggregates.  相似文献   

12.
Details of quaternary compounds formation in the system NaF–CaF2–AlF3 are specified. To achieve this aim, the samples of phases NaCaAlF6 and Na2Ca3Al2F14 have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 °C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF2–NaAlF4, where at T=745–750 °C invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4). The peculiarity of the equilibrium is NaAlF4 metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na2Ca3Al2F14 is stable and NaCaAlF6 above this temperature. The phase NaCaAlF6 fixed by rapid quenching from high temperatures and when heated up to 640 °C decomposes, yielding Na2Ca3Al2F14. Further heating in vacuum at temperature up to 740 °C results in decomposition of Na2Ca3Al2F14 into CaF2 and Na3AlF6. The expected reverse transformation of Na2Ca3Al2F14 into NaCaAlF6 has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases.

Synopsis

Thermal transformation of the quaternary compounds in system (NaF–CaF2–AlF3) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4) at T=745–750 °C.  相似文献   

13.
Novel CGO/NiO–CGO dual-layer hollow fibres (HFs) have been fabricated in a single-step co-extrusion and co-sintering process. LSCF–CGO cathodes layers were then deposited onto the dual-layer HFs to construct micro-tubular SOFCs. The NiO in the micro-tubular HF–SOFCs was reduced at 550 °C using hydrogen gas to form Ni anodes. Scanning electron microscope images showed that the dual-layer HFs have porous anodes and dense electrolyte layers. Preliminary measurements with a HF–SOFC fed with H2 and atmospheric oxygen, produced maximum power densities of 420 W m−2 and 800 W m−2 at 450 °C and 550 °C, respectively.  相似文献   

14.
SiO2–Ag wires were synthesized by a sol–gel technique. A two step approach was followed, focusing mainly on the effect of acid concentration on the first stage and processing temperature on the second. This acid-catalyzed reaction on the first stage yielded SiO2–AgCl wires with diameters as low as 800 nm average, and lengths ranging up to 100 μm, as determined by LV-SEM and TEM. A thermal treatment at different temperatures on the second step, under H2 atmosphere, yields silica–silver unidirectional structures. The chemical composition of these structures was determined by EDS, indicating the presence of Si, O and Ag. The transformation of the wires as a function of temperature under reducing atmosphere was followed by electron microscopy analysis. At 400 °C and above the silica starts to cover the reduced silver while maintaining the unidirectional conformation, suggesting a tendency to form silver wires covered by a silica layer.  相似文献   

15.
The thermal decomposition process and pyrolysis products of poly(vinyl phenyl ketone) (PVPK) were investigated by thermogravimetric analysis (TGA) and on-line pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS). TGA showed a largest weight loss rate around 380 °C. Py-GC–MS was used for the qualitative analysis of the pyrolysis products at 350, 500, 600, 700 and 850 °C. The major volatile thermal decomposition product was found to be 1-phenyl-2-propenone, which dominated all other volatile species especially under the least severe pyrolysis conditions (<600 °C). At higher temperatures a much wider range of pyrolysis products was obtained. The results have been interpreted assuming that primary random chain scission reactions occur followed by typical unzipping mainly producing monomer units; detachment of the side-group occurs only under more severe pyrolysis conditions. Py-GC–MS showed to be effective in PVPK detection in ink and paint formulations.  相似文献   

16.
This study evaluates the interactions of a model stratum corneum (SC) lipid system based on ceramide AP (N-(2-hydroxystearoyl)phytosphingosine) with three selected permeation enhancers including urea, oleic acid (OA), and N-lauroylglycine lauryl ester (12G12) using temperature-dependent small-angle X-ray diffraction measurements. As a first step, the thermotropic phase behaviour of the control SC lipid membrane, i.e. without enhancer, was characterized. The system shows two separated phases at 32 °C, which mix into another phase at around 45 °C. This phase is stable till 70 °C when the repeat distance starts to decrease. After cooling, only one phase is visible which shows two phase transitions at 45 and 70 °C again. Based on these results, the effects of the permeation enhancers were studied. The permeation enhancers influence the phase behaviour of the system. Urea and 12G12 cause a concentration-dependent shift of the phase transition temperatures while OA induces a phase separation. The results from this simple model system may provide basis for studies on more complex systems or real SC.  相似文献   

17.
Ternary system: H2O–Fe(NO3)3–Co(NO3)2 isotherm: 30 °C. The H2O–Co(NO3)2 binary system has been investigated in the –28 to 50 °C temperature range. The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements. One isotherm is established at 30 °C, and the stable solid phases that appear are iron nitrate nonahydrate: Fe(NO3)3·9 H2O, iron nitrate hexahydrate: Fe(NO3)3·6 H2O, cobalt nitrate hexahydrate: Co(NO3)2·6 H2O, and cobalt nitrate trihydrate: Co(NO3)2·3 H2O. To cite this article: B. El Goundali et M. Kaddami, C. R. Chimie 9 (2006).  相似文献   

18.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

19.
A sol–gel entrapped 1:3 mixture of [Rh(cod)Cl]2 and Na[HRu3(CO)11] catalyzes the hydrogenation of various unsaturated substrates by two distinguishable mechanisms. Under 13.8 bar H2 and 20 °C methylated arenes react rapidly to give cycloalkane derivatives. XRD and TEM studies showed that under these conditions the hydrogenation proceeds without the generation of free metal particles. The hydrogenation of non-methylated arenes, as well as that of alkenes and alkynes, require a temperature of 80–120 °C at which the entrapped complexes form metallic nano-particles of 3–5 nm. Chloroarenes are also hydrodechlorinated at 120 °C, but require a hydrogen pressure of ≥25 bar. At both temperature ranges the catalysts are reusable at least four times. The high efficiency of the hydrogenation process at 20 °C is rationalized by a synergistic effect between the two different metal atoms of the combined catalyst. This may be related to a remote control model through a hydrogen spillover mechanism.  相似文献   

20.
We report that glass–ceramic Li2S–P2S5 electrolytes can be prepared by a single step ball milling (SSBM) process. Mechanical ball milling of the xLi2S·(100 − x)P2S5 system at 55 °C produced crystalline glass–ceramic materials exhibiting high Li-ion conductivity over 10−3 S cm−1 at room temperature with a wide electrochemical stability window of 5 V. Silicon nanoparticles were evaluated as anode material in a solid-state Li battery employing the glass–ceramic electrolyte produced by the SSBM process and showed outstanding cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号