首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These experiments on across-channel masking (ACM) and comodulation masking release (CMR) were designed to extend the work of Grose and Hall [J. Acoust. Soc. Am. 85, 1276-1284 (1989)] on CMR. They investigated the effect of the temporal position of a brief 700-Hz signal relative to the modulation cycle of a 700-Hz masker 100% sinusoidally amplitude modulated (SAM) at a 10-Hz rate, which was either presented alone (reference masker) or formed part of a masker consisting of the 3rd to 11th harmonics of a 100-Hz fundamental. In the harmonic maskers, each harmonic was either SAM with the same 10-Hz modulator phase (comodulated masker) or with a shift in modulator phase of 90 degrees for each successive harmonic (phase-incoherent masker). When the signal was presented at the dips of the envelope of the 700-Hz component, the comodulated masker gave lower thresholds than the reference masker, while the phase-incoherent masker gave higher thresholds, i.e., a CMR was observed. No CMR was found when the signal was presented at the peaks of the envelope. In experiment 1, we replicated the experiment of Grose and Hall, but with an additional condition in which the 600- and 800-Hz components were removed from the masker, in order to investigate the role of within-channel masking effects. The results were similar to those of Grose and Hall. In experiment 2, the signal was added at the peaks of the envelope of the 700-Hz component, but in antiphase to the carrier of that component and at a level chosen to transform the peaks into dips. No CMR was found. Rather, performance was worse for both the comodulated and phase-incoherent maskers than for the reference masker. This was true even when the flanking components in the maskers were all remote in frequency from 700 Hz. In experiment 3, the masker components were all 50% SAM and the signal was added in antiphase at a dip of the envelope of the 700-Hz component, thus making the dip deeper. Performance was worse for the phase-incoherent than for the reference masker and was worse still for the comodulated masker. The results of all three experiments indicate strong ACM effects. CMR was found only when the signal was placed in the dips of the masker envelope and when it produced an increase in level relative to that in adjacent bands.  相似文献   

2.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band, an effect called comodulation masking release (CMR). This paper examines CMR as a function of masker bandwidth and time delay between the envelopes of the on-frequency and flanking bands. The 1.0-kHz sinusoidal signal had a duration of 400 ms. The on-frequency band was presented alone (reference condition) or with the flanking band. The flanking-band envelope was either correlated or uncorrelated with that of the on-frequency band. Flanking-band center frequencies ranged from 0.25-2.0 kHz. The flanking band was presented either in the same ear as the on-frequency band (monaural condition) or in the opposite ear (dichotic condition). The noise bands had bandwidths of 6.25, 25, or 100 Hz. In the correlated conditions, the flanking-band envelope was delayed with respect to that of the on-frequency band by 0, 5, 10, or 20 ms. For the 100-Hz bandwidth, CMRs were small (typically less than 1 dB) in both monaural and dichotic conditions at all delay times. For the 25-Hz bandwidth, CMRs were about 3.5 dB for the 0-ms delay, and decreased to about 1.5 dB for the 20-ms delay. For the 6.25-Hz bandwidth, CMRs averaged about 5 dB and were almost independent of delay time. The results suggest that the absolute delay time is not the critical variable determining CMR. The magnitude of CMR appears to depend on the correlation between the envelopes of the on-frequency and flanking bands. However, the results do not support a model of CMR that assumes that signal threshold corresponds to a constant change in across-band envelope correlation when the correlation is transformed to Fisher's z.  相似文献   

3.
4.
These experiments were intended to determine whether comodulation masking release (CMR) occurs for maskers that are modulated in frequency rather than in amplitude. In experiment I, thresholds for a sinusoidal signal were measured in the presence of two continuous sinusoidal maskers: one was centered at the signal frequency (1.0 kHz), and the other was positioned at flanking frequencies ranging from 0.5 to 2.0 kHz. The two maskers were frequency modulated (FM) by the same low-pass-noise modulator (correlated condition) or by independent noise modulators (uncorrelated condition). Thresholds were the same for the correlated and uncorrelated maskers, i.e., no CMR occurred. This was also true when the flanking band was presented in the ear opposite to that containing the signal and the on-frequency masking band. In experiment II, 25-Hz-wide noise maskers were used. The on-frequency band was sinusoidally frequency modulated, while the off-frequency band either had the same FM or no FM. Thresholds were similar for the two conditions, again indicating that no CMR occurred. The results suggest that, unlike amplitude modulation, correlated FM of the masker in different frequency bands does not give rise to a release from masking.  相似文献   

5.
Detection thresholds for a tone in an unfamiliar tonal pattern can be greatly elevated under conditions of masker uncertainty [Neff and Green, Percept. Psychophys. 41, 409-415 (1987); Oh and Lutfi, J. Acoust. Soc. Am. 101, 3148 (1997)]. The present experiment was undertaken to determine whether harmonicity of masker tones can reduce the detrimental effect of masker uncertainty. Inharmonic maskers were comprised of m=2-49 frequency components selected at random on each presentation within 100-10000 Hz, excluding frequencies between 920-1080. Harmonic maskers were comprised of frequency components selected at random within this same range, but constrained to have a fundamental frequency of 200 Hz. For inharmonic maskers the signal was a 1000-Hz tone. For harmonic-maskers the signal was a tone whose frequency was either harmonically (1000 Hz) or inharmonically (1047 Hz) related to the masker. In all conditions the amount of masking was greatest for m = 20-40 components. At this point, harmonic maskers with harmonic signal produced an average of 9-12 dB less masking than inharmonic maskers. Harmonic maskers with inharmonic signal produced an average of 16-20 dB less masking.  相似文献   

6.
Psychophysical estimates of compression often assume that the basilar-membrane response to frequencies well below characteristic frequency (CF) is linear. Two techniques for estimating compression are described here that do not depend on this assumption at low CFs. In experiment 1, growth of forward masking was measured for both on- and off-frequency pure-tone maskers for pure-tone signals at 250, 500, and 4000 Hz. The on- and off-frequency masking functions at 250 and 500 Hz were just as shallow as the on-frequency masking function at 4000 Hz. In experiment 2, the forward masker level required to mask a fixed low-level signal was measured as a function of the masker-signal interval. The slopes of these functions did not differ between signal frequencies of 250 and 4000 Hz for the on-frequency maskers. At 250 Hz, the slope for the 150-Hz masker was almost as steep as that for the on-frequency masker, whereas at 4000 Hz the slope for the 2400-Hz masker was much shallower than that for the on-frequency masker. The results suggest that there is substantial compression, of around 0.2-0.3 dB/dB, at low CFs in the human auditory system. Furthermore, the results suggest that at low CFs compression does not vary greatly with stimulation frequency relative to CF.  相似文献   

7.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

8.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

9.
Psychometric functions (PFs) for forward-masked tones were obtained for conditions in which signal level was varied to estimate threshold at several masker levels (variable-signal condition), and in which masker level was varied to estimate threshold at several signal levels (variable-masker condition). The changes in PF slope across combinations of masker frequency, masker level, and signal delay were explored in three experiments. In experiment 1, a 2-kHz, 10-ms tone was masked by a 50, 70 or 90 dB SPL, 20-ms on-frequency forward masker, with signal delays of 2, 20, or 40 ms, in a variable-signal condition. PF slopes decreased in conditions where signal threshold was high. In experiments 2 and 3, the signal was a 4-kHz, 10-ms tone, and the masker was either a 4- or 2.4-kHz, 200-ms tone. In experiment 2, on-frequency maskers were presented at 30 to 90 dB SPL in 10-dB steps and off-frequency maskers were presented at 60 to 90 dB SPL in 10-dB steps, with signal delays of 0, 10, or 30 ms, in a variable-signal condition. PF slopes decreased as signal level increased, and this trend was similar for on- and off-frequency maskers. In experiment 3, variable-masker conditions with on- and off-frequency maskers and 0-ms signal delay were presented. In general, the results were consistent with the hypothesis that peripheral nonlinearity is reflected in the PF slopes. The data also indicate that masker level plays a role independent of signal level, an effect that could be accounted for by assuming greater internal noise at higher stimulus levels.  相似文献   

10.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

11.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
"Overshoot" is a simultaneous masking phenomenon: Thresholds for short high-frequency tone bursts presented shortly after the onset of a broadband masker are raised compared to thresholds in the presence of a continuous masker. Overshoot for 2-ms bursts of a 5000-Hz test tone is described for four subjects as a function of the spectral composition and level of the masker. First, it was verified that overshoot is largely independent of masker duration. Second, overshoot was determined for a variety of 10-ms masker bursts composed of differently filtered uniform masking noise with an overall level of 60 dB SPL: unfiltered, high-pass (cutoff at 3700 Hz), low-pass (cutoff at 5700 Hz), and third-octave-band-(centered at 5000 Hz) filtered uniform masking noises presented separately or combined with different bandpass maskers (5700-16000 Hz, 5700-9500 Hz, 8400-16000 Hz) were used. Third, masked thresholds were measured for maskers composed of an upper or lower octave band adjacent to the third-octave-band masker as a function of the level of the octave band. All maskers containing components above the critical band of the test tone led to overshoot; no additional overshoot was produced by masker components below it. Typical values of overshoot were on the order of 12 dB. Overshoot saturated when masker levels were above 60 dB SPL for the upper octave-band masker. The standard neurophysiological explanation of overshoot accounts only partially for these data. Details that must be accommodated by any full explanation of overshoot are discussed.  相似文献   

13.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

14.
Masking noise well separated in frequency from the signal may improve the detectability of the signal if the masking noise is modulated. This effect is referred to as co-modulation masking release (CMR). The present experiments examine the effect of across-frequency differences in masking noise level on CMR. Three experiments were performed, each using a different method to create modulated noise stimuli having across-frequency differences in the spectrum level. All stimulation was monaural. Experiment I used a notched noise method (selectively reducing the level for the critical band centered on the signal). Experiment II used a method in which the level of a 100-Hz-wide masker centered on the signal was varied, and flanking noise bands were of constant level. Experiment III used a method in which flanking noise bands were varied in level, and the 100-Hz-wide masker centered on the signal was of constant level. The signal was a 1000-Hz, 300-ms pure tone. The CMR effect was negated by small spectral notches centered on the signal (experiment I). However, CMR proved to be relatively robust to across-frequency level differences in experiments II and III (a CMR effect occurred for across-frequency differences in spectrum level as great as 20 dB). Low CMR's obtained in experiment I were probably due to relatively poor correlation of across-frequency modulation pattern which occurred with notched noise. The results of experiments II and III suggest that the fluctuation pattern is of primary importance in providing release from masking, and that information on absolute levels, coded across frequency, is of less importance.  相似文献   

15.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

16.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

17.
Two masking-release paradigms thought to involve across-channel processing are comodulation masking release (CMR) and profile analysis. Similarities between these two paradigms were explored by comparing signal detection in maskers that varied only in degree of envelope fluctuation. The narrow-band-noise maskers were 10 Hz wide and their envelope fluctuations were manipulated using the low-noise noise algorithm of Pumplin [J. Acoust. Soc. Am. 78, 100-104 (1985)]. Masking conditions included the classic CMR conditions of an on-frequency band, multiple (five) incoherent bands, or multiple coherent bands. Detection was compared using both random-phase noise (RPN) and low-noise noise (LNN) maskers. In one set of conditions, the signal was identical to the on-frequency masker, yielding an intensity discrimination task. Conditions that included RPN maskers and tonal signals resembled the classic CMR paradigm, whereas conditions including LNN and noise signals more closely resembled the classic profile analysis paradigm. Other conditions may be considered hybrids. This combination of conditions provided a wide variety of within- and across-channel cues for detection. The results suggest that CMR and profile analysis could be based upon the same set of stimulus cues and perhaps the same perceptual processes.  相似文献   

18.
The first part of this paper presents several experiments on signal detection in temporally modulated noise, yielding a general approach toward the concept of comodulation masking release (CMR). Measurements were made on masked thresholds of both long- and short-duration, narrow-band signals presented in a 100% sinusoidally amplitude-modulated (SAM) noise masker (modulation frequency 32 Hz), as a function of masker bandwidth from 1/3 oct up to 13/3 octs, while the masker band was geometrically centered at signal frequency. With the short-duration signals placed in the valley of the masker, a substantial CMR (i.e., a decrease of masked threshold with increasing masker bandwidth) was found, whereas for the long-duration signals CMR was smaller. Furthermore, investigations were carried out to determine whether CMR changes when the bandwidth of the signals, consisting of bandpass impulse responses, is increased. The data indicate that substantial CMR remains even when all masker bands contain a signal component, thus minimizing across-channel differences. This finding is not in line with current models accounting for the CMR phenomenon. The second part of this paper concerns signal detection in spectrally shaped noise. Also investigated was whether release from masking occurs for the detection of a pure-tone signal at a valley or a peak of a simultaneously presented masking noise with a sinusoidally rippled power spectrum, when this masker was preceded and followed by a second noise (temporal flanking burst) with an identical spectral shape as the on-signal noise. Similar to CMR effects for temporal modulations, the data indicate that coshaping masking release (CSMR) occurs when the signal is placed in a valley of the spectral envelope of the masker, whereas no release from masking is found when the signal is placed at a peak of the spectral envelope of the masker. The implications of these experiments for measures of spectral and temporal resolution are discussed.  相似文献   

19.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

20.
The aim of this study was to examine whether the scheme of across-frequency comparison underlying comodulation masking release (CMR) is sensitive to the placement of the signal in the array of comodulating bands. This was addressed using the paradigm of signal-frequency uncertainty. In the first experiment, maskers were constructed of linearly spaced sinusoidally amplitude-modulated tones, and the signal was a pure tone presented at one of five frequencies. A small uncertainty effect was observed for the noncomodulated masker, but no significant effect was observed for the comodulated masker. In the second experiment, the maskers were constructed of logarithmically spaced noise bands, and the signal was a pure tone presented at one of seven frequencies. In these conditions, an uncertainty effect was observed in both noncomodulated and comodulated maskers, which was larger than that observed in experiment 1. The results were interpreted as indicating that the mechanism of across-frequency comparison underlying CMR is sensitive to signal location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号